Skip to main content
Log in

Postischemic alteration of muscarinic acetylcholine and adenosine A1 binding sites in gerbil brain

Protective effects of a novel vinca alkaloid derivative, vinconate, and pentobarbital using an autoradiographic study

  • Published:
Research in Experimental Medicine

Summary

We studied the alterations in the binding of muscarinic cholinergic and adenosine A1 receptors following transient cerebral ischemia in Mongolian gerbils and examined the effects of the novel vinca alkaloid derivative vinconate and pentobarbital against the alterations in the binding of these receptors. Animals were allowed to survive for 5 h and 7 days after 10 min of cerebral ischemia induced by bilateral occlusion of common carotid arteries. [3H]Quinuclidinyl benzilate (QNB) and [3H]cyclohexyladenosine (CHA) were used to label muscarinic cholinergic and adenosine A1 receptors, respectively. The [3H]QNB and [3H]CHA bindings showed no significant alteration in the gerbil brain 5 h after ischemia. However, these bindings in the striatium, the hippocampal CA1 sector, and the hippocampal CA3 sector revealed a significant reduction 7 days after ischemia. The [3H]CHA binding also showed a significant decline in the dentate molecular layer 7 days after ischemia. Intraperitoneal application of vinconate (100 and 300 mg/kg) 10 min and pentobarbital (40 mg/kg) 30 min before ischemia showed a mild reduction in the [3H]CHA binding in the brain 5 h after ischemia. Especially, the reduction was found in the hippocampal CA1 sector and the dentate molecular layer. However, the [3H]QNB binding revealed no significant alteration in the brain 5 h after ischemia. Seven days after ischemia, both drugs prevented a marked reduction in the [3H]CHA binding in the striatium, but not in the hippocampal CA1 sector, the hippocampal CA3 sector, and the dentate molecular layer. By contrast, vinconate and pentobarbital failed to prevent the reduction in the [3H]QNB binding in the striatum. Morphological study indicated that vinconate and pentobarbital ameliorated the neuronal damage to the striatum, but not the hippocampal damage 7 days after ischemia. This histological finding was relatively consistent with the alteration in the [3H]CHA binding. these receptor autoradiographic and histological data suggest that vinconate and pentobarbital can protect the brain from both cellular and functional consequences of ischemia. These findings are of interest in relation to the mechanisms of ischemic brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki T, Kato H, Kogure K (1989) Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: distribution and time course. Acta Neurol Scand 80:548–553

    PubMed  CAS  Google Scholar 

  2. Araki T, Kato H, Kogure K, Inoue T (1990) Regional neuroprotective effects of pentobarbital on ischemia-induced brain damage. Brain Res Bull 25:861–865

    Article  PubMed  CAS  Google Scholar 

  3. Araki T, Inoue T, Kato H, Kogure K (1990) Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat. Mol Chem Neuropathol 12:203–213

    Article  PubMed  CAS  Google Scholar 

  4. Araki T, Kogure K, Murakami M (1991) Prevention of abnormal calcium accumulation in postischemic gerbil brain by vinconate. Acta Neurol Scand 83:155–160

    Article  PubMed  CAS  Google Scholar 

  5. Araki T, Kato H, Kogure K (1991) Alteration of second messenger systems after transient cerebral ischemia in gerbils: protective effect of pentobarbital and an autoradiographic analysis. Neurosci Lett 130:57–60

    Article  PubMed  CAS  Google Scholar 

  6. Araki T, Kato H, Hara H, Kogure K (1992) Postischemic binding of [3H]phorbol 12,13-dibutyrate and [3H]inostiol-1,4,5-trisphosphate in the gerbil brain: an autoradiographic study. Neuroscience 46:973–980

    Article  PubMed  CAS  Google Scholar 

  7. Bartus RT, Dean III RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Article  PubMed  CAS  Google Scholar 

  8. Bonnekoh P, Barbier A, Oschlies U, Hossman HA (1990) Selective vulnerability in the gerbil hippocampus: morphological changes after 5-min ischemia and long survival times. Acta Neuropathol 80:18–25

    Article  PubMed  CAS  Google Scholar 

  9. Cronstein BN, Levin RI, Belanoff J, Weismann G, Hirschorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770

    Article  PubMed  CAS  Google Scholar 

  10. Dragunow M, Faull RLM (1988) Neuroprotective effects of adenosine. Trends Pharmacol Sci 9:193–194

    Article  PubMed  CAS  Google Scholar 

  11. Fastbom J, Fredholm BB (1985) Inhibition of [3H]glutamate release from rat hippocampal slices by L-phenylisopropyl-adenosine. Acta Physiol Scand 125:121–123

    PubMed  CAS  Google Scholar 

  12. Foker JE, Einzig S, Wang T (1980) Adenosine metabolism and myocardial preservation: consequence of adenosine catabolism on myocardial high-energy compounds and tissue blood flow. J Thorac Cardiovasc Surg 80:506–516

    PubMed  CAS  Google Scholar 

  13. Fredholm B, Lindgren E, Lindstrom K, Vernet L (1983) The effect of some drugs with purported antianoxic effect on veratridine-induced purine release from isolated rat hypothalamic synaptosomes. Acta Pharmacol Toxicol 53:236–244

    Article  CAS  Google Scholar 

  14. Jorgersen MB, Deckert J, Wright DC (1989) Binding of [3H]inositoltrisphosphate and [3H]phorbol 12,13-dibutyrate in rat hippocampus following transient global ischemia: a quantitative autoradiographic study. Neurosci Lett 103:219–224

    Article  Google Scholar 

  15. Kato H, Araki T, Hara H, Kogure K (1991) Sequential changes in muscarinic acetylcholine, adenosine A1 and calcium antagonist binding sites in the gerbil hippocampus following repeated brief ischemia. Brain Res 553:33–38

    Article  PubMed  CAS  Google Scholar 

  16. Lee KL, Tetzlaff W, Kreutzberg GW (1986) Rapid down-regulation of hippocampal adenosine receptor following brief anoxia. Brain Res 380:155–158

    Article  PubMed  CAS  Google Scholar 

  17. Onodera H, Iijima K, Kogure K (1986) Mononucleotide metabolism in the rat brain after transient ischemia. J Neurochem 46:1704–1710

    Article  PubMed  CAS  Google Scholar 

  18. Onodera H, Sato G, Kogure K (1987) Quantitative autoradiographic analysis of muscarinic cholinergic and adenosine A1 binding sites after transient forebrain ischemia in the gerbil. Brain Res 415:309–322

    Article  PubMed  CAS  Google Scholar 

  19. Phillis JW, O'Regan MH (1989) Deoxycoformycin antagonizes ischemia-induced neuronal degeneration. Brain Res Bull 22:537–540

    Article  PubMed  CAS  Google Scholar 

  20. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  21. Rosdy B, Balazs M, Szporny L (1976) Biochemical effects of ethyl-apovincaminate. Drug Res 26:1923–1926

    CAS  Google Scholar 

  22. Rudolphi KA, Keil M, Hinze HJ (1987) Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: a behavioral and histopathological study. J Cereb Blood Flow Metab 7:74–81

    PubMed  CAS  Google Scholar 

  23. Sauer D, Rischke R, Beck T, Roßberg C, Mennel HD, Bielenberg GW, Krieglstein J (1988) Vinpocetine prevents ischemic cell damage in the rat hippocampus. Life Sci 43: 1733–1739

    Article  PubMed  CAS  Google Scholar 

  24. Snyder SH (1985) Adenosine as a neuromodulator. Annu Rev Neurosci 8:103–124

    Article  PubMed  CAS  Google Scholar 

  25. Sternau LL, Lust WD, Ricci AJ, Ratcheson R (1989) Role for γ-aminobutyric acid in selective vulnerability in gerbils, Stroke 20:281–287

    PubMed  CAS  Google Scholar 

  26. Van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, T., Kato, H. & Kogure, K. Postischemic alteration of muscarinic acetylcholine and adenosine A1 binding sites in gerbil brain. Res. Exp. Med. 192, 79–88 (1992). https://doi.org/10.1007/BF02576261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576261

Key words

Navigation