Skip to main content
Log in

The Painlevé III equation and the Iwasawa decomposition

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For the third Painlevé equation an explicit isomorphism between the monodromy data and the data of the approach of Dorfmeister-Pedit-Wu, based on the Iwasawa decomposition of the loop groups, is established. As an application, this provides a simple algebraic way to calculate the monodromy data in terms of the Cauchy data at zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman H., Erdelyi A.: Higher Transcendental Functions, vol.2 New-York: McGraw-Hill 1955

    Google Scholar 

  2. Bobenko A.I.: Constant mean curvature surfaces and integrable equations, Uspekhi Matem. Nauk46(4), 3–42 (1991) (Russian). [English transl.: Russ. Math. Surv.46(4) (1991), 1–45]

    MATH  MathSciNet  Google Scholar 

  3. Deift P.A., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math.137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  4. Dorfmeister J., Pedit F., Wu H.: Weierstrass type representations of harmonic maps into symmetric spaces, Preprint (1993)

  5. Flaschka H., Newell A.C.: Monodromy and spectrum preserving deformations I, Comm. Math. Phys.76, 67–116 (1980)

    Article  MathSciNet  Google Scholar 

  6. Its A.R., Novokshenov V.Yu.: The isomonodromic deformation method in the theory of the Painlevé equations, Lect. Notes Math. 1191, Berlin Heidelberg New York: Springer 1986

    MATH  Google Scholar 

  7. Jimbo T.: Monodromy problem and the boundary condition for some Painlevé equations, Publ. RIMS Kyoto Univ.18, 1137–1161 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Krichever I.M.: Analogue of the D’Alambert formula for the equations of the principal chiral field and the sine-gordon equation, Dokl. Akad. Nauk SSSR253(2), 288–292 (1980) (Russian). [English transl. Sov. Math. Dokl22 (1981), 79–84]

    MathSciNet  Google Scholar 

  9. Lerner D., Sterling I.: Construction of constant mean curvature surfaces using the DPW representation of harmonic maps, SFB 288 Preprint No 92, Berlin (1993)

  10. McIntosh I.: Infinite dimensional Lie groups and the two-dimensional Toda lattice, in: Harmonic maps and integrable systems, ed: A.P. Fordy, J.C. Wood, Aspects of Mathematics E23, Wiesbaden: Vieweg 1994

    Google Scholar 

  11. Novokshenov V.Yu: On the asymptotics of the general real-valued solution to the third Painlevé equation, Dokl. Akad. Nauk. SSSR283(5), 1161–1165 (1985) (Russian). [English transl. Sov. Phys. Dokl.30, (1985), 666–668]

    MathSciNet  Google Scholar 

  12. Pinkall U.: Fast loop group factorization and Mr. Bubble, Talk at the conference “Differentialgeometrie and Quantenphysik”, Miedzyzdroje (1994)

  13. Presley A., Segal G.: Loop Groups, Oxford: Clarendon Press 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the Sonderforschungsbereich 288

Partially supported by the National Science Foundation (DMS-9315964)

This article was processed by the author using the LATEX style filecljour1 from Springer-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobenko, A., Its, A. The Painlevé III equation and the Iwasawa decomposition. Manuscripta Math 87, 369–377 (1995). https://doi.org/10.1007/BF02570481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02570481

Navigation