Skip to main content
Log in

Formation of active nitrite reductase (cytochromecd 1) in the strainParacoccus denitrificans HUUG25

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain HUUG25 ofParacoccus denitrificans has been frequently thought to be devoid of allc-type cytochromes. We show here by means of enzymological and immunological techniques that the mutant synthesizes active nitrite reductase (cytochromecd 1) upon prolonged exposure to microoxic conditions. The synthesis occurred faster in the presence of exogenous hemin. The time pattern of 5-aminolevulinate synthase activity was also altered by the mutation. These findings suggest a defective regulation of heme supply to the site of nitrite reductase assembly in the periplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckman DL, Kranz RG (1993) Cytochromec biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxinlike protein. Proc Natl Acad Sci USA 90:2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Beckman DL, Trawick DR, Kranz RG (1992) Bacterial cytochromec biogenesis. Genes Dev 6:268–283

    PubMed  CAS  Google Scholar 

  • Bolgiano B, Smith L, Davies HC (1989) Electron transport reactions in a cytochromec-deficient mutant ofParacoccus denitrificans. Biochim Biophys Acta 973:227–234

    PubMed  CAS  Google Scholar 

  • Bosma G, Braster M, Stouthamer AH, Verseveld HW van (1987a) Isolation and characterization of ubiquinol oxidase complexes fromParacoccus denitrificans cells cultured under various limiting growth conditions in the chemostat. Eur J Biochem 165: 657–664

    Article  PubMed  CAS  Google Scholar 

  • Bosma G, Braster M, Stouthamer AH, Verseveld HW van (1987b) Subfractionation and characterization of solublec-type cytochromes fromParacoccus denitrificans cultured under various limiting conditions in the chemostat. Eur J Biochem 165: 665–670

    Article  PubMed  CAS  Google Scholar 

  • Chang CK, Timkovich R, Wu W (1986) Evidence that hemed 1 is a 1,3-porphyrindion. Biochemistry 25:8447–8453

    Article  PubMed  CAS  Google Scholar 

  • Kučera I, Skládal P (1990) Formation of a potent respiratory inhibitor at nitrite reduction by nitrite reductase isolated from the bacteriumParacoccus denitrificans. J Basic Microbiol 30: 515–522

    Article  PubMed  Google Scholar 

  • Kučera I, Matyášek R, Dvořáková J, Dadák V (1986) Anaerobic adaptation ofParacoccus denitrificans: sequential formation of denitrification pathway and changes in activity of 5-aminole-vulinate synthase and catalase. Curr Microbiol 13:107–110

    Article  Google Scholar 

  • Kučera I, Matchová I, Dadák V (1990) Respiratory rate as a regulatory factor in the biosynthesis of the denitrification pathway of the bacteriumParacoccus denitrificans. Biocatalysis 4: 29–37

    Google Scholar 

  • Lam Y, Nicholas DJD (1969) A nitrite reductase with cytochrome oxidase activity fromMicrococcus denitrificans. Biochim Biophys Acta 180:459–472

    Article  PubMed  CAS  Google Scholar 

  • Long AR, Anthony C (1991) Characterization of the periplasmic cytochromec ofParacoccus denitrificans: identification of the electron acceptor for methanol dehydrogenase, and description of a novel cytochromec heterodimer. J Gen Microbiol 137: 415–425

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Marrs B, Gest H (1973) Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacteriumRhodopseudomonas capsulata. J Bacteriol 114:1045–1051

    PubMed  CAS  Google Scholar 

  • Mat'chová I, Kučera I (1991) Evidence for the role of soluble cytochromec in the dissimilatory reduction of nitrite and nitrous oxide by cells ofParacoccus denitrificans. Biochim Biophs Acta 1058:256–260

    Article  Google Scholar 

  • Mat'chová I, Černá I, Kučera I (1991) Determination of nitrate by conversion to nitrite usingParacoccus denitrificans. Folia Microbiol 35:136–140

    Google Scholar 

  • Mat'chová I, Kučera I, Janiczek O, Spanning RJM van, Oltmann LF (1993) The existence of an alternative electron-transfer pathway to the periplasmic nitrite reductase (cytochromed 1) inParacoccus denitrificans. Arch Microbiol 159:272–275

    Article  Google Scholar 

  • Matthews JC, Timkovich R (1993) Biosynthetic origins of the carbon skeleton of hemed 1. Bioorg Chem 21:71–82

    Article  CAS  Google Scholar 

  • Newton N (1969) The two-haem nitrite reductase ofMicrococcus denitrificans. Biochim Biophys Acta 185:316–331

    PubMed  CAS  Google Scholar 

  • Ohshima T, Sugiyama M, Uozumi N, Iijima S, Kobayashi T (1993) Cloning and sequencing of a gene encoding nitrite reductase fromParacoccus denitrificans and expressing of the gene inEscherichia coli. J Ferment Bioeng 76:82–88

    Article  CAS  Google Scholar 

  • Oozer F, Page MD, Ferguson SJ, Goodwin PM (1993) Phenotypic characterization ofc-type-cytochrome-deficient mutants ofMethylobacterium extorguens AM1 and identification of two chromosomeal regions essential for the production ofc-type cytochromes. J Gen Microbiol 139:11–19

    Google Scholar 

  • Page MD, Ferguson SJ (1989) A bacterialc-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochromecd 1 (nitrite reductase) fromParacoccus denitrificans. Mol Microbiol 3:653–661

    Article  PubMed  CAS  Google Scholar 

  • Page MD, Ferguson SJ (1990) Apo forms of cytochromeC 550 and cytochromecd 1 are translocated to the periplasm ofParacoccus denitrificans in the absence of haem incorporation caused by either mutation or inhibition of haem synthesis. Mol Microbiol 4:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Page MD, Ferguson SJ (1994) Differential reduction in soluble and membrane-boundc-type cytochrome contents in aParacoccus denitrificans mutant partially deficient in 5-aminole-vulinate synthase activity. J Bacteriol 176:5919–5928

    PubMed  CAS  Google Scholar 

  • Parsonage D, Greenfield AJ, Ferguson SJ (1986) Evidence that energy conserving electron transport pathways to nitrate and cytochromeo branch at ubiquinone inParacoccus denitrificans. Arch Microbiol 145:191–196

    Article  CAS  Google Scholar 

  • Puustinen A, Finel M, Virkki M, Wikstrom M (1989) Cytochromeo (bo) is a proton pump inParacoccus denitrificans andEscherichia coli. FEBS Lett 249:163–167

    Article  PubMed  CAS  Google Scholar 

  • Ritz D, Bott M, Hennecke H (1993) Formation of several bacterialc-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol 9:729–740

    Article  PubMed  CAS  Google Scholar 

  • Snell FD, Snell CT (1949) Colorimetric methods of analysis. Van Nostrand, New York, p 804

    Google Scholar 

  • Tait GH (1973) Aminolaevulinate synthetase ofMicrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J 131:389–403

    PubMed  CAS  Google Scholar 

  • Verseveld HW van, Stouthamer AH (1992) The genusParacoccus. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 2321–2334

    Google Scholar 

  • Verseveld HW van, Krab K, Stouthamer AH (1981) Proton pump coupled to cytochromec oxidase inParacoccus denitrificans. Biochim Biophys Acta 635:525–534

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kučera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mafchová, I., Kučera, I. Formation of active nitrite reductase (cytochromecd 1) in the strainParacoccus denitrificans HUUG25. Arch. Microbiol. 164, 58–62 (1995). https://doi.org/10.1007/BF02568735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568735

Key words

Navigation