Skip to main content
Log in

The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Clostridium acetobutylicum strain P262 utilized lactate at a rapid rate [600 nmol min−1 (mg protein)−1], but lactate could not serve as the sole energy source. When acetate was provided as a co-substrate, the growth rate was 0.05h−1. Butyrate, carbon dioxide and hydrogen were the end products of lactate and acetate utilization, and the stoichiometry was 1 lactate + 0.4 acetate →0.7 butyrate + 0.6H2 + 1CO2. Lactate-grown cells had twofold lower hydrogenase than glucose-grown cells, and the lactate-grown cells used acetate as an alternative electron acceptor. The cells had a poor affinity for lactate (Ks=1.1 mM), and there was no evidence for active transport. Lactate utilization was catabolyzed by an inducible NAD-independent lactate dehydrogenase (iLDH) that had a pH optimum of 7.5. The iLDH was fivefold more active withd-lactate thanl-lactate, and theK m ford-lactate was 3.2 mM. Lactate-grown cells had little butyraldehyde dehydrogenase activity, and this defect did not allow the conversion of lactate to butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PMS :

phenazine methosulfate

nLDH :

NAD-dependent lactate dehydrogenase

iLDH :

NAD-independent lactate dehydrogenase

Fru-1,6-P 2 :

fructose-1,6-bisphosphate

DTT :

dithiothreitol

ΔΨ:

membrane potential

TPP + :

tetraphenylphosphonium bromide

References

  • Andersch W, Bahl H, Gottschalk G (1983) Level of enzymes involved in acetate, butyrate, acetone and butanol fermentation byClostridium acetobutylicum. Eur J Appl Microbiol Biotechnol 18:327–332

    Article  CAS  Google Scholar 

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genusClostridium. In: Minton NP, Clarke DJ (eds) Clostridia. Plenum Press, New York, pp 27–63

    Google Scholar 

  • Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced byClostridium acetobutylicum. Appl Environ Microbiol 52:169–172

    PubMed  CAS  Google Scholar 

  • Barker HA, Stadtman ER, Kornberg A (1955) Coenzyme A transphorase fromClostridium kluyveri. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 599–600

    Chapter  Google Scholar 

  • Bhat JV, Barker HA (1947)Clostridium nov. spec. the role of acetic acid in the butyric acid fermentation of lactate. J Bacteriol 54:381–391

    PubMed  CAS  Google Scholar 

  • Brockman HL, Wood WA (1975)d-Lactate dehydrogenase ofPeptostreptococcus elsdenii. J Bacteriol 124:1454–1461

    PubMed  CAS  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) GenusClostridium Prazmowski. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1149–1152

    Google Scholar 

  • Chen JS, Mortenson LE (1974) Purification and properties of hydrogenase fromClostridium pasteurianum W 5. Biochim Biophys Acta 371:283–298

    PubMed  CAS  Google Scholar 

  • Cook GM, Morgan HW (1994) Hyperbolic growth ofThermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfulicum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41:84–89

    CAS  Google Scholar 

  • Datta R, Zeikus JG (1985) Modulation of acetone-butanol fermentation by carbon monoxide and organic acids. Appl Environ Microbiol 49:522–529

    PubMed  CAS  Google Scholar 

  • Freier D, Gottschalk G (1987)l(+)-Lactate dehydrogenase ofClostridium acetobutylicum is activated by fructose-1,6-bisphosphate. FEMS Microbiol Lett 43:229–233

    CAS  Google Scholar 

  • Futai M (1973) Membraned-lactate dehydrogenase fromEscherichia coli. Purification and properties. Biochemistry 12:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139

    PubMed  CAS  Google Scholar 

  • Gutmann I, Wahlefeld A (1974)l(+)-Lactate: determination with lactate dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1464–1468

    Google Scholar 

  • Harold FM, Levin E (1974) Lactic acid translocation: terminal step in glycolysis byStreptococcus faecalis. J Bacteriol 117:1141–1148

    PubMed  CAS  Google Scholar 

  • Hartmanis MG, Gatenbeck S (1984) Intermediary metabolism inClostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47:1277–1283

    PubMed  CAS  Google Scholar 

  • Haugaard N (1959)d-andl-lactic acid oxidases ofEscherichia coli. Biochim Biophys Acta 31:66–72

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Gibbins LN, Forsberg CW (1985) Transmembrane pH gradient and membrane potential inClostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl Environ Microbiol 50:1043–1047

    PubMed  CAS  Google Scholar 

  • Hüsemann MHW, Papoutsakis ET (1989) Enzymes limiting butanol and acetone formation in continuous and batch cultures ofClostridium acetobutylicum. Appl Microbiol Biotechnol 31:435–444

    Article  Google Scholar 

  • Jones DT, Woods DR (1989) Solvent production. In: Minton NP, Clarke DJ (eds) Clostridia. Plenumn Press, New York, pp 105–144

    Google Scholar 

  • Junelles AM, Janati-Idrissi R, Petitdemange H, Gay R (1988) Iron effect on acetone-butanol fermentation. Curr Microbiol 17:47–51

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Olsen EB, Russell JB, Henick-Kling T (1991) Electrogenicl-malate transport byLactobacillus plantarum: a basis for energy derivation from malolactic fermentation. J Bacteriol 173:6199–6206

    PubMed  CAS  Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H, Konings WN (1980) Generation of an electrochemical proton gradient inStreptococcus cremoris by lactate efflux. Proc Natl Acad Sci USA 77:5502–5506

    Article  PubMed  CAS  Google Scholar 

  • Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase fromClostridium acetobutylicum. J Bacteriol 170:2971–2976

    PubMed  CAS  Google Scholar 

  • Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Boston, pp 25–50

    Google Scholar 

  • Stadtman ER (1957) Preparation assay of acyl coenzyme A and other thiol esters; use of hydroxylamine. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 3. Academic Press, New York, pp 931–941

    Chapter  Google Scholar 

  • Thauer RK, Jungerman K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Tholozan JL, Touzel JP, Samain E, Grivet JP, Prensier G, Albagnac G (1992)Clostridium neopropionicum sp. nov. a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol 157:249–257

    Article  PubMed  CAS  Google Scholar 

  • Wolin MJ (1964) Fructose 1,6-diphosphate requirement of streptococcal lactic dehydrogenases. Science 146:775–777

    Article  PubMed  CAS  Google Scholar 

  • Woolford MK (1984) The chemistry of silage. In: Woolford MK (ed) The silage fermentation. Marcel Dekker, New York, pp 71–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diez-Gonzalez, F., Russell, J.B. & Hunter, J.B. The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262. Arch. Microbiol. 164, 36–42 (1995). https://doi.org/10.1007/BF02568732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568732

Key words

Navigation