Skip to main content
Log in

Comportement asymptotique des fonctions harmoniques en courbure négative

  • Published:
Commentarii Mathematici Helvetici

Résumé

SoitM une variété riemannienne complète, simplement connexe et de courbure négative pincée. On montre que, pour une fonction harmonique surM, les notions non-tangentielles de convergence, de bornitude et de finitude de l'énergie sont équivalentes en presque tout point du bord géométrique. Ce résultat est un analogue «géométrique» d'un théorème de A. P. Calderón et E. M. Stein dans le demi-espace euclidien. La démonstration, inspirée de la méthode de J. Brossard dans le cas euclidien, utilise le mouvement brownien.

Abstract

LetM be a complete simply connected Riemannian manifold whose sectional curvatures are bounded between two negative constants. It is shown that, for a given harmonic function onM, non-tangential properties of convergence, boundedness and finiteness of energy are equivalent for almost every point of the geometric boundary. This is a “geometric” analogue of Calderón-Stein theorem in the euclidean half-space. The proof is using Brownian motion, like J. Brossard's one for the euclidean case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  • [Anc87]Alano Ancona,Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. of Math.125 (1987), 495–536.

    Article  MathSciNet  Google Scholar 

  • [Anc90]Alano Ancona,Théorie du potentiel sur les graphes et les variétés in P. L. Hennequin (ed.),École d'été de probabilités de Saint-Flour XVIII. Springer, Lect. Notes in Math. 1427, Berlin, 1990.

  • [And83]M. T. Anderson,The Dirichlet problem at infinity for manifolds of negative curvature. J. Diff. Geometry.18 (1983), 701–721.

    Google Scholar 

  • [AS85]M. T. Anderson andR. Schoen,Positive harmonic functions on complete manifolds of negative curvature, Annals of Math.121 (1985), 429–461.

    Article  MathSciNet  Google Scholar 

  • [Bro77]Jean Brossard,Utilisation du mouvement brownien à l'étude du comportement à la frontière des fonctions harmoniques dans un demi-espace. Thèse de troisième cycle, Grenoble, 1977.

  • [Bro78]Jean Brossard,Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Dèmonstration probabiliste d'un thèorème de Calderón et Stein. Séminaire de Probabilités, Université de Strasbourg,XII (1978), 378–397.

    MathSciNet  Google Scholar 

  • [Cal50a]A. P. Calderón,On a theorem of Marcinkiewicz and Zygmund. Trans. of A.M.S.68 (1950), 55–61.

    Article  Google Scholar 

  • [Cal50b]A. P. Calderón,On the behaviour of harmonic functions at the boundary. Trans. of A.M.S.,68 (1950), 47–54.

    Article  Google Scholar 

  • [CY75]S.-Y. Cheng andS.-T. Yau,Differential equations on riemannian manifolds and their geometric applications. Comm. Pure Appl. Math.28 (1975), 333–354.

    MathSciNet  Google Scholar 

  • [Doo57]J. L. Doob,Conditional brownian motion and the boundary limits of harmonic functions. Bull. de la S.M.F.85 (1957), 431–468.

    MathSciNet  Google Scholar 

  • [Dur84]Richard Durrett,Brownian Motion and Martingales in Analysis. Wadsworth Advanced Books & Software, 1984.

  • [EO73]P. Eberlein andB. O'Neill,Visibility manifolds. Pac. J. Math.46 (1973), 45–109.

    MathSciNet  Google Scholar 

  • [Fat06]Pierre Fatou,Séries trigonométriques et séries de Taylor. Acta Math.,30 (1906), 335–400.

    Article  Google Scholar 

  • [GHL87]Sylvestre Gallot, Dominique Hulin andJacques Lafontaine,Riemannian Geometry, Berlin-Heidelberg-New York-London-Paris-Tokyo, Springer-Verlag, 1987.

    MATH  Google Scholar 

  • [Kif86]Y. Kifer,Brownian motion and positive harmonic functions on complete manifolds of non-positive curvature, Pitman Research Notes in Math.150 (1986), 187–232.

    MathSciNet  Google Scholar 

  • [Kor91]A. Korányi,Potential Theory, Amer. Math. Soc. Abst.,12 (1991), 359.

    Google Scholar 

  • [KP76]A., Korányi andR. B. Putz,Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. soc.224 (1976), 157–168.

    Article  MathSciNet  Google Scholar 

  • [KP81]A. Korányi andR. B. Putz,An area theorem for products of symmetric spaces of rank one. Bull. Sc. math.105 (1981), 3–16.

    Google Scholar 

  • [Led90]François Ledrappier,Harmonic measures and Bowen-Margulis measures. Israël J. Math.71 (1990), 275–287.

    MathSciNet  Google Scholar 

  • [McK69]H. P. McKean,Stochastic Integrals, New York-London, Academic Press, 1969.

    MATH  Google Scholar 

  • [MM77]M.-P. Malliavin andP. Malliavin,Intégrales de Lusin-Calderón pour les fonctions biharmoniques. Bull. Sc. Math.101 (1977), 357–384.

    MathSciNet  Google Scholar 

  • [Mos60]Jürgen Moser,A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math.13 (1960), 456–468.

    Google Scholar 

  • [Mou94]Frédéric Mouton,Convergence non-tangentielle des fonctions harmoniques en courbure négative. Thèse de Doctorat, Grenoble, 1994.

  • [MZ38]J. Marcinkiewicz andA. Zygmund,A theorem of Lusin. Duke Math. J.4 (1938), 473–485.

    Article  MathSciNet  Google Scholar 

  • [Pin78]M. A. Pinsky,Stochastic riemannian geometry, in A. T. Bharucha-Reid (ed.),Problabilistic Analysis and Related Topics. Academic Press, 1978.

  • [Pra75]J.-J. Prat,Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative. C.R.A.S. Paris280 (1975), A.1539-A.1542.

    MathSciNet  Google Scholar 

  • [Pri16]I. I. Privalov,Sur les fonctions conjugées. Bull. Soc. Math. France (1916), 100–103.

  • [Spe43]D. C. Spencer,A function theoric identity. Amer. J. Math.65 (1943), 147–160.

    Article  MathSciNet  Google Scholar 

  • [Ste61]E. M. Stein,On the theory of harmonic functions of several variables II. Acta Math.106 (1961), 137–174.

    Article  MathSciNet  Google Scholar 

  • [Sul83]Dennis Sullivan,The Dirichlet problem at infinity for a negatively curved manifold. J. of Diff. Geom.18 (1983), 723–732.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouton, F. Comportement asymptotique des fonctions harmoniques en courbure négative. Commentarii Mathematici Helvetici 70, 475–505 (1995). https://doi.org/10.1007/BF02566019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02566019

Navigation