Skip to main content
Log in

Splines from a Bayesian point of view

  • Published:
Test Aims and scope Submit manuscript

Summary

Procedures using splines for estimating values of linear functionals of an unknown function based on finitely many possibly noisy observations of function values are reviewed taking a Bayesian point of view. Interpolation with splines is emphasized as an example of Bayesian numerical analysis, smoothing with splines is presented as interpolation in estimated function values. Extensions of the approach to estimating values of non-linear functionals applied to the unknown function and to estimation subject to linear constaints on the unknown function are discussed. Furthermore, invariance of Bayesian inference to modifications of the prior distribution, resulting from alternative choices of an appropriate function space for estimation, is addressed, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers J. F. and Delampady, M. (1992). Hierarchical Bayesian curve, fitting and smoothing.Canadian J. Statist. 20, 35–49.

    MathSciNet  MATH  Google Scholar 

  • Ansley, C. F., Kohn, R. and Wong, C.-M. (1993). Nonparametric spline regression with prior information.Biometrika 80, 75–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. O. (1988) (2nd. ed.).Statistical Decision Theory and Bayesian Analysis. Berlin: Springer.

    Google Scholar 

  • Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of residual variance in nonparametric regression.Biometrika 75, 189–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. (1991).Statistics for Spatial Data. New York: Wiley.

    MATH  Google Scholar 

  • Diaconis, P. (1988). Bayesian numerical analysis.Statistical Decision Theory and Related Topics IV (S. S. Gupta, J. O. Berger, eds.), Berlin: Springer, 162–175.

    Google Scholar 

  • Eubank, R. L. (1984) Approximate regression models and splines.Commun. Statist.-Theor. Meth. 13, 433–484.

    MathSciNet  MATH  Google Scholar 

  • Eubank, R. L. (1985) Diagnostics for smoothing splinesJ. Roy. Statist. Soc. B47, 332–341.

    MathSciNet  MATH  Google Scholar 

  • Eubank, R. L. (1988).Spline Smoothing and Nonparametric Regression. New York/Basel: Dekker

    MATH  Google Scholar 

  • Green, P.J. and Silverman, B. (1994).Nonparametric Regression and Generalized Linear Models. London: Chapman and Hall.

    MATH  Google Scholar 

  • Gu, Chong (1992). Penalized likelihood regression: A Bayesian analysis.Statistica Sinica 2, 255–264.

    MathSciNet  MATH  Google Scholar 

  • Hutchinson, M. F., Booth, T. H., Mc Mahon, J. P. and Nix, H. A. (1984). Estimating monthly mean values of daily total solar, radiation for Australia.Solar Energy 32, 277–290.

    Google Scholar 

  • Jaynes, E. (1984). The intuitive inadequacy of classical statistics.Epistemiologia VII (Special Issue), 43–74.

    Google Scholar 

  • Kimeldorf, G. S. and Wahba, G. (1970a). Spline functions and stochastic processes.Sankya A 132, 173–180.

    MathSciNet  Google Scholar 

  • Kimeldorf, G. S. and Wahba, G. (1970b). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines.Ann. Math. Statist. 41, 495–502.

    MathSciNet  MATH  Google Scholar 

  • Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions.J. Math. Anal. Appl. 33, 82–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R. and Ansley, C. F. (1988) Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation.Bayesian Analysis of Time Series and Dynamic Models (Spall, J. C., ed.), New York: Dekker, 393–430.

    Google Scholar 

  • Kuelbs, J., Larkin, F. M. and Williamson, J. A. (1972). Weak probability distributions on reproducing kernel Hilbert spaces.Rocky Mt. J. Math. 2, 369–378.

    MathSciNet  MATH  Google Scholar 

  • Kuo, H. (1975).Gaussian measures in Banach spaces, Berlin, New York: Springer.

    MATH  Google Scholar 

  • Larkin, F. M. (1972). Gaussian measure in Hilbert space and applications in numerical analysis.Rocky Mt. J. Math. 2, 379–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Larkin, F. M. (1980). A probabilistic approach to the estimation of functionals.Approximation Theory III (Cheney., E. W. ed.), London: Academic Press, 577–582.

    Google Scholar 

  • Larkin, F. M. (1983). The weak Gaussian distribution as a means of localization in Hilbert space.Applied Nonlinear Functionalanalysis (Gorenflo, R. and Hoffmann, K.-H., eds.) Frankfurt a.M.: Verlag Peter Lang, 145–177.

    Google Scholar 

  • Li, K.-C. (1982) Minimaxity of the Method of Regularization on Stochastic Processes.Ann. Satist. 10, 937–942.

    MATH  Google Scholar 

  • van der Linde, A., Witzko, K.-H. and Jöckel, K.-H. (1995). Spatial-temporal analyses of mortality using splinesBiometrics, (to appear).

  • van der Linde, A. (1994). The invariance of statistical analyses with smoothing splines with respect to the inner product in the reproducing kernel Hilbert space.Compstat 94. (to appear).

  • van der Linde, A. (1993a). A note on smoothing splines as Bayesian estimates.Statistics and Decisions 11, 61–67.

    MathSciNet  MATH  Google Scholar 

  • van der Linde, A. (1993b). Smoothing splines with linear constraints.Proc. of the Interregional Meeting of the German and Netherlands Region of the International Biometric Society. Muenster, Germany, March 15–18, 1994.

  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model.J. Roy. Statist. Soc. B 34, 1–41.

    MathSciNet  MATH  Google Scholar 

  • Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple.J. Appl. Math. Phys. (ZAMP) 30, 292–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Ripley, B. D. (1988).Statistical Inference for Spatial Processes, Cambridge: University Press.

    Google Scholar 

  • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to nonparametric regression curve fitting.J. Roy. Statist. Soc. B 47, 1–52, (with discussion).

    MATH  Google Scholar 

  • Thomas-Agnan, C. (1990). A family of splines for non-parametric regression and their relationship with Kriging.Statistics 21, 533–548.

    MathSciNet  MATH  Google Scholar 

  • Thomas-Agnan, C. (1991). Spline functions and stochastic filtering.Ann. Statist. 19, 1512–1527.

    MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regressions.J. Roy. Statist. Soc. B 40, 364–372.

    MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1981) Nurnerical experiments with the thin plate histospline..Comm. Statist.-Theor. Meth. A 10, 2475–2514.

    MathSciNet  Google Scholar 

  • Wahba, G. (1983). Bayesian ‘Confidence Intervals’ for the cross-validated smoothing spline.J. Roy. Statist. Soc. B,45, 133–150.

    MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1984) Cross-validated spline methods for the estimation of multivariate functions from data on functionals.Statistics: An Appraisal, (David, H.A. and David, H. T. eds.), Iowa State: Univ. Press, 205–235.

    Google Scholar 

  • Wahba, G. (1990) Spline models for observational data, Philadelphia, Pennsylvania: SIAM.

    MATH  Google Scholar 

  • Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods for variational objective analysis using splines and cross-validation.Monthly, Weather Review 108, 1122–1145.

    Article  Google Scholar 

  • Wecker, W.E. and Ansley, C. F. (1983). The signal extraction approach to nonlinear regression and spline smoothing.J. Amer. Statist. Soc. 78, 81–89.

    MathSciNet  MATH  Google Scholar 

  • Weinert, H. L. (1978). Statistical methods in optimal curve fitting.Comm. Statist.-Simul. Comput. 7, 417–435.

    MathSciNet  Google Scholar 

  • Weinert, H.L. and Sidhu, G.S. (1978). A Stochastic Framework for Recursive Computation of Spline Functions, Part I, Interpolating Splines.IEEE Transactions on Information Theory,IT-24, 45–50.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Linde, A. Splines from a Bayesian point of view. Test 4, 63–81 (1995). https://doi.org/10.1007/BF02563103

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02563103

Keywords

Navigation