Skip to main content
Log in

Antimicrobial resistance—Pharmacological solutions

  • Published:
Infection Aims and scope Submit manuscript

Abstract

The interaction between microbial resistance and antibacterial agents occurs in a direct and an indirect fashion. Directly—through the development of resistance to the agent used, or to agents of the same class—as exemplified by the induction of β-lactamase by both grampositive and gram-negative bacteria. It also takes place through the development of resistance to compounds of different classes to the compound used, as exemplified by the loss ofStreptococcus pneumoniae susceptibility to penicillin that is accompanied by a parallel loss of sensitivity to erythromycin and to tetracycline. As for the indirect way—microbial resistance may develop through selection of resistant organisms when the patient is treated with antibiotics, when the environment is contaminated with antibiotics (hospital) or when antibacterial agents are used in agriculture and animal husbandry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerding, D. N., Larson, T. A., Hughes, R. A., Weiler, M., Shanholtzer, C., Peterson, L. R.: Aminoglycoside resistance and aminoglycoside usage: ten years experience in one hospital. Antimicrob. Agents Chemother. 35 (1991) 1284–1290.

    PubMed  CAS  Google Scholar 

  2. Shimizu, K., Jumada, T., Hsieh, W. C., Chung, H. Y., Chong, Y., Hare, R. S., Miller, G. H., Sabatelli, F. J., Howard, J.: Comparison of aminoglycoside resistance patterns in Japan, Formosa, Korea, Chile and the US. Antimicrob. Agents Chemother. 28 (1985) 282–288.

    PubMed  CAS  Google Scholar 

  3. Haley, R. W., Hightower, A. W., Khabbaz, R. F., Thornsberry, C., Martone, W. J., Allen, J. R., Hughes, J. M.: Emergence of methicillin resistantStaphylococcus aureus in United States hospitals. Ann. Intern. Med. 97 (1982) 297–311.

    PubMed  CAS  Google Scholar 

  4. Vasquez, V., Calderon, E., Rodriguez, R.: Chloramphenicol-resistant strains ofSalmonella typhosa. N. Engl. J. Med. 286 (1972) 1220–1226.

    Google Scholar 

  5. Rao, P. S., Rajashekar, V., Varghese, G. K., Shivananda, P. G.: Emergence of multi drug resistantSalmonella typhi in rural southern India. Am. J. Trop. Med. Hyg. 48 (1993) 108–111.

    PubMed  CAS  Google Scholar 

  6. Handsfield, H. H., Sandstrom, E. G., Knapp, J. S., Perrine, P. L., Whittington, W. L., Sayers, D. E., Holmes, K. K.: Epidemiology of penicillinase producingNeissera gonorrhoeae: analysis by autotyping and serogrouping. N. Engl. J. Med., 306 (1982) 950–954.

    Article  PubMed  CAS  Google Scholar 

  7. Knapp, J. S., Zenilman, J. M., Biddle, J. W., Perkins, G. H., DeWitt, W. E., Thomas, M. L., Johnson, S. R., Morse, J. A.: Frequency and distribution in the United States ofNeisseria gonorrhoeae with plasmid-mediated high-level resistance to tetracycline. J. Infect. Dis. 155 (1987) 819–822.

    PubMed  CAS  Google Scholar 

  8. Fox, K. K., Knapp, J. S., Holmes, K. K., Hook, E. W. 3rd, Judson, F. N., Thompson, S. E., Washington, J. A., Whittington, W. L.: Antimicrobial resistance inNeisseria gonorrhoeae in the United States, 1988–1994: the emergence of decreased susceptibility to the fluoroquinolones. J. Infect. Dis. 175 (1987) 1396–1403.

    Article  Google Scholar 

  9. Ejlertsen, T., Skov, R.: The beta- lactamases ofMoraxella (Branhamella) catarrhalis isolated from Danish children. APMIS 104 (1996) 557–562.

    Article  PubMed  CAS  Google Scholar 

  10. Guillemot, D., Carbon, C., Balkau, B., Geslin, P., Lecoeur, H., Vauzelle-Kervroedan, F., Bouvenot, G., Eschwege, E.: Low dosage and long treatment duration of beta lactam: risk factors for carriage of penicillin-resistantStreptococcus pneumoniae. JAMA 279 (1998) 365–370.

    Article  PubMed  CAS  Google Scholar 

  11. Arason, V. A., Kristianson, K. G., Sigurdsson, J. A., Stefansdottir, G., Molstad, S., Gudmunsson, S: Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children? Cross-sectional prevalence study. BMJ 313 (1996) 387.

    PubMed  CAS  Google Scholar 

  12. Huovinen, P., Seppala, H., Kataja, J., Klaukka, T.: The relationship between erythromycin consumption and resistance in Finland. Finnish study group for antimicrobial resistance. Ciba Found. Symp. 207 (1997) 36–41.

    PubMed  CAS  Google Scholar 

  13. Seppala, H., Klaukka, T., Vuopio-Varkila, J., Muotiala, A., Helenius, H., Lager, K., Huovinen, P.: The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish study group for antimicrobial resistance. N. Engl. J. Med. 377 (1997) 441–446.

    Article  Google Scholar 

  14. Austin, D. J., Kristianson, K. G., Anderson, R. M.: The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl. Acad. Sci. USA 96 (1999) 1152–1156.

    Article  PubMed  CAS  Google Scholar 

  15. Martinez, E., de la Cruz, F.: Genetic elements involved in Tn21 sitespecific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J. 9 (1990) 1275–1281.

    PubMed  CAS  Google Scholar 

  16. Gould, L. M.: A review of the role of antibiotic policies in the control of antibiotic resistance. J. Antimicrob. Chemother. 43 (1999) 359–365.

    Article  Google Scholar 

  17. Shulman, J. A., Terry, P. M., Hough, C. E.: Colonization with gentamicin resistantPseudomonas aeruginosa, pyocine type 5, in a burn unit. J. Infect. Dis. 124 (1971) 18–23.

    Google Scholar 

  18. Ridley, M., Lynn, R., Barrie, D., Stead, K. C.: Antibiotic resistance ofStaphylococcus aureus and hospital antibiotic policies. Lancet i (1970) 230–233.

    Article  Google Scholar 

  19. Barber, M., Dutton, A. A. C., Beard, M. A., Elmes, P. C., Williams, R.: Reversal of antibiotic resistance in hospital staphylococcal infections. BMJ 1 (1960) 11–17.

    Article  PubMed  CAS  Google Scholar 

  20. Bulger, R. J., Sherris, J. C.: Decreased incidence of antibiotic resistance amongStaphylococcus aureus: a study in a university hospital over a nine year period. Ann. Intern. Med. 69 (1968) 1099–1108.

    PubMed  CAS  Google Scholar 

  21. Meyer, K. S., Urban, C., Eagan, J. A., Beger, B. J., Rahal, J. J.: Nosocomial outbreak ofKlebsiella infection resistant to late generation cephalosporins. Ann. Intern. Med. 119 (1993) 353–358.

    PubMed  CAS  Google Scholar 

  22. Rahal, J. J., Urban, C., Horn, D., Freeman, K., Segal-Maurer, A. S., Maurer, J. et al.: Class restriction of cephalosporins use to control total cephalosporin resistance in nosocomialKlebsiella. JAMA 280 (1998) 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  23. Levy, S. B.: Balancing the drug-resistant, equation. Trends Microbiol. 2 (1994) 341–432.

    Article  PubMed  CAS  Google Scholar 

  24. Archibald, I., Phillips, L., Monnet, D., McGowan, J. E., Tenover, F., Gaynes, R.: Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin. Infect. Dis. 24 (1997) 211–215.

    PubMed  CAS  Google Scholar 

  25. Lipsitch, M., Levin, B. K.: The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41 (1997) 363–373.

    PubMed  CAS  Google Scholar 

  26. Schentag, J. J., Birmingham, M. C., Paladino, J. A.: In nosocomial pneumonia, optimizing antibiotics other than aminoglycosides is a more important determinant of successful clinical outcome, and a better means of avoiding resistance. Semin. Respir. Infect. 12 (1997) 279–283.

    Google Scholar 

  27. Schentag, J. J., Strenkoski-Nix, L. C., Nix, D. E., Forrest, A.: Pharmacodynamic interactions of antibiotics alone and in combinations. Clin. Infect. Dis. 27 (1998) 40–46.

    PubMed  CAS  Google Scholar 

  28. Lode, H., Borner, K., Gilbert, B., Gordts, B., Verbuggen, A. M.: Surveillance of aminoglycoside resistance: European data. Am. J. Med. 80 (Suppl. 6B) (1986) 76–81.

    Google Scholar 

  29. Moody, M. M., De Jongh, C. A., Schimpf, S. C., Tillman, G. L.: Long term amikacin use. Effects on aminoglycoside susceptibility patterns of gram-negative bacilli. JAMA 248 (1982) 1199–1202.

    Article  PubMed  CAS  Google Scholar 

  30. Katzenstein, D.: Combination therapies for HIV infection and genomic drug resistance. Lancet 350 (1997) 970–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, E. Antimicrobial resistance—Pharmacological solutions. Infection 27 (Suppl 2), S32–S34 (1999). https://doi.org/10.1007/BF02561668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561668

Keywords

Navigation