Skip to main content

Introductory Chapter

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth
  • 1212 Accesses

Abstract

Resistance to antimicrobial agents has been known since the beginning of the antibiotic era. In fact, Alexander Fleming and Selman Waksman were already aware of the ability of bacteria to become resistant to antibiotics. In addition, it is likely that this antibiotic resistance has been enhanced and stimulated by the extensive use of antimicrobials in human and veterinary medicine, as well as by the somewhat illicit use of these compounds in intensive livestock feeding. In anyway, the emergence of antibiotic-resistant bacteria currently constitutes one of the major problems facing medicine, in such a way that, in some cases, we are almost out of drugs to combat infection. Indeed, respiratory tract infections caused by multiresistant Pseudomonas aeruginosa, as well as infections caused by methicillin-resistant Staphylococcus aureus, are notoriously hard to control. In addition, some microbes are naturally resistant to most antimicrobials. This is the case for mycobacteria, as these organisms have a very hydrophobic lipid layer on their external surface that prevents hydrophilic drugs from entering the cell. In summary, the prevalent scenario is defined by a diminishing effectiveness of conventional antimicrobials, an increasing virulence of pathogenic and opportunistic microbes and the need to explore alternatives. Both the WHO 2014 Antimicrobial Resistance Global Report and the 2014 US Presidential Report emphasized the need to address this antimicrobial resistance (AMR) problem; and AMR was also the subject of the special actions initiated in the USA and Europe (IMI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, New York, 757 p

    Google Scholar 

  • Berrah G, Konetzka WA (1962) Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J Bacteriol 83:738–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci F, Houlgatte R, Nguyen C, Benziane A, Nasser V, Granjeaud S, Tagett B, Loriod B, Giaconia A, Jacquemier J, Viens P, Birnbaum D (2001) Molecular typing of breast cancer: transcriptomics and DNA microarrays. Bull Cancer 88:277–286

    CAS  PubMed  Google Scholar 

  • Betts JC (2002) Transcriptomics and proteomics: tools for the identification of novel drug targets and vaccine candidates for tuberculosis. IUBMB Life 53:239–242

    Article  CAS  PubMed  Google Scholar 

  • Bowlby AA, Rowland S (1914) A report on gas gangrene. Br Med J 2:913–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruggemann H, Gottschalk G (eds). (2009) Clostridia: molecular biology in the post-genomic era. Caister Academic Press

    Google Scholar 

  • Cantani A (1885) Un tentativo di batterioterapia. Gior Int Sci Med 7:493

    Google Scholar 

  • Carruthers JD, Carruthers JA (1992) Treatment of glabellar frown lines with C. botulinum-A exotoxin. J Dermatol Surg Oncol 18:17–21

    Article  CAS  PubMed  Google Scholar 

  • Chabbert Y (1950) Bacteriologic analysis of the colicine complexes produced by 14 antibiotic strains of Escherichia coli. Ann Inst Pasteur (Paris) 79:51–59

    CAS  Google Scholar 

  • Charpak M, Dedonder R (1965) Production of a soluble “competence factor” by Bacillus subtilis marburg ind-168. C R Acad Sci Hebd Seances Acad Sci D 260:5638–5641

    CAS  PubMed  Google Scholar 

  • Christensen LR, Macleod CM (1945) A proteolytic enzyme of serum: characterization, activation, and reaction with inhibitors. J Gen Physiol 28:559–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couvreur P, Kante B, Roland M, Speiser P (1979a) Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 68:1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Fattal E, Andremont A (1979b) Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharm Res 8:1079–1086

    Article  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natlal Acad Sci 99:10494–10499

    Article  CAS  Google Scholar 

  • d’Herelle F (1917) On an invisible microbe antagonistic toward dysenteric bacilli. Res Microbiol 158:553–554

    Google Scholar 

  • d’Herelle F (1931) Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 7:329–348

    PubMed  PubMed Central  Google Scholar 

  • Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ (1998) Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. J Bacteriol 180:5875–5884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desnottes JF (1999) New targets in the field of antibacterial agents. Prospective aspects. Ann Pharm Fr 57:177–182

    CAS  PubMed  Google Scholar 

  • Duggar BM (1948) Aureomycin; a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181

    Article  CAS  PubMed  Google Scholar 

  • El-Samaligy MS, Rohdewald P (1983) Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J Pharm Pharmacol 35:537–539

    Article  CAS  PubMed  Google Scholar 

  • Ennis HL (1965) Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J Bacteriol. 90:1109–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas-Himsley H (1980) Bacteriocins–are they broad-spectrum antibiotics? J Antimicrob Chemother 6:424–426

    Article  CAS  PubMed  Google Scholar 

  • Feijoo-Siota L, Villa TG (2011) Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol 4:1066–1088

    Article  CAS  Google Scholar 

  • Fellig J, Wiley CE (1959) The inhibition of pancreatic ribonuclease by anionic polymers. Arch Biochem Biophys 85:313–316

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JG (1911) Ehrlich-Hata remedy for syphilis. Can Med Assoc J 1:38–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P (2014) Regulation of competence for natural transformation in streptococci. Infect Genet Evol S1567–1348(14):00328-1 (pii)

    Google Scholar 

  • Fredericq P, Gratia A (1950) Relationships between colicines and bacteriophages of the T 1–7 group. Antonie Van Leeuwenhoek 16:119–121

    Article  CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusté E, Galisteo GJ, Ll Jover, Vinuesa T, Villa TG, Viñas M (2012) Comparison of antinbiotic susceptibility of old and current Serratia. Future Microbiol 7:781–786

    Article  PubMed  Google Scholar 

  • Gangadharam PR, Harold FM, Schaefer WB (1963) Selective inhibition of nucleic acid synthesis in Mycobacterium tuberculosis by isoniazid. Nature 198:712–714

    Article  CAS  PubMed  Google Scholar 

  • Gardner JF (1950) Some antibiotics formed by Bacterium coli. Br J Exp Pathol 31:102–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GoodgaL SH, Herriott RM (1961) Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol 44:1201–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratia A (1922) The Twort-D’Herelle phenomenon: II. Lysis and microbic variation. J Exp Med 35:287–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratia A (1925) Sur un remarquable example d’antagonisme entre deux souches de colibacille. Comput Rend Soc Biol 93:1040–1042

    Google Scholar 

  • Hankin EH (1896) An outbreak of cholera in an officers’ mess. Br Med J 2:1817–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussy P, Maass G, Tümmler B, Grosse F, Schomburg U (1986) Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase a primase complex, topoisomerase I and II, and growth of mammalian lymphoblasts. Antimicrob Agents Chemother 29:1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie M (1969) Inhibition of ribonuclease from Aspergillus saitoi by nucleosides. J Biochem 65:907–913

    CAS  PubMed  Google Scholar 

  • Jacoli GG (1968) Mechanism of inhibition of ribonuclease by bentonite. Can J Biochem 46:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Just-Baringo X, Albericio F, Álvarez M (2014) Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 12:317–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiravan MK, Khilare MM, Nikoomanesh K, Chothe AS, Jain KS (2013) Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzym Inhib Med Chem 28:419–435

    Article  CAS  Google Scholar 

  • Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ (2009) Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine 4:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler T, Perron GG, Buckling A, van Delden C (2010) Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 6:e1000883

    Article  PubMed  PubMed Central  Google Scholar 

  • König H, Behr E, Löwer J, Kurth R (1989) Azidothymidine triphosphate is an inhibitor of both human immunodeficiency virus type 1 reverse transcriptase and DNA polymerase gamma. Antimicrob Agents Chemother 33:2109–2114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamden MP, Mathias AP, Rabin BR (1962) The inhibition of ribonuclease by iodoacetate. Biochem Biophys Res Commun 8:209–214

    Article  CAS  PubMed  Google Scholar 

  • Larzábal M, Mercado EC, Vilte DA, Salazar-González H, Cataldi A, Navarro-Garcia F (2010) Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli. PLoS ONE 5:e9046

    Article  PubMed  PubMed Central  Google Scholar 

  • Larzábal M, Zotta E, Ibarra C, Rabinovitz BC, Vilte DA, Mercado EC, Cataldi Á (2013) Effect of coiled-coil peptides on the function of the type III secretion system-dependent activity of enterohemorragic Escherichia coli O157:H7 and Citrobacter rodentium. Int J Med Microbiol. 303(1):9–15. doi:10.1016/j.ijmm.2012.12.001 (Epub 2013 Jan 10)

    Article  PubMed  Google Scholar 

  • Lederberg J, McCray AT (2001) ‘Ome Sweet’Omics—a genealogical treasury of words. Scientist 15:8–12

    Google Scholar 

  • M’Arthur D (1816) Copy of a letter on the subject of tetanus, from Duncan M’Arthur M.D. F.L.S. late physician to the Naval Hospital at Deal, to the Commissioners for transports, London. Med Chir Trans 7:461–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Malek I, Sevcik V, Rehacek Z, Dolezilova L, Musilek V, Vanek Z, Novotny L (1957) Experiences and methods in the search for new antibiotics. J Hyg Epidemiol Microbiol Immunol 1:397–412

    CAS  PubMed  Google Scholar 

  • Malléa M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Barbe J, Pagès JM (2003) Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, Tanowitz HB, Sotgia F, Lisanti MP (2011) Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle 10:4208–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller WE (1977) Rational design of arabinosyl nucleosides as antitumor and antiviral agents. Jpn J Antibiot 30(Suppl):104–120

    PubMed  Google Scholar 

  • Müller WE, Rohde HJ, Beyer R, Maidhof A, Lachmann M, Taschner H, Kahn RK (1975) Mode of action of 9-beta-D-arabinofuranosyladenine on the synthesis of DNA, RNA, and protein in vivo and in vitro. Cancer Res 35:2160–2168

    PubMed  Google Scholar 

  • Nath S, Kaittanis C, Tinkham A, Perez JM (2008) Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 80:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Niedergang F, Didierlaurent A, Kraehenbuhl JP, Sirard JC (2004) Dendritic cells: the host Achille’s heel for mucosal pathogens? Trends Microbiol 12:79–88

    Article  CAS  PubMed  Google Scholar 

  • Oberg B (1988) Antiviral therapy. J Acquir Immune Defic Syndr 1:257–266

    CAS  PubMed  Google Scholar 

  • Pakula R (1965) Production of competence-provoking factor and development of competence of a transformable streptococcus in serum-free media. Can J Microbiol 11:811–822

    Article  CAS  PubMed  Google Scholar 

  • Pasteur L, Joubert JF (1877) Charbon et septicémie. C.r. Séanc Acad Sci 85:101–115

    Google Scholar 

  • Polakowski IJ, Lewis MK, Muthukkaruppan VR, Erdman B, Kubai L, Auerbach R (1993) A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice. Am J Pathol 143:507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puente XS, López-Otín C (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabelink TJ, Wijewickrama DC, de Koning EJ (2007) Peritubular endothelium: the Achilles heel of the kidney? Kidney Int 72:926–930

    Article  CAS  PubMed  Google Scholar 

  • Rajabalian S, Foroumadi A, Shafiee A, Emami S (2007) Functionalized N(2-oxyiminoethyl) piperazinyl quinolones as new cytotoxic agents. J Pharm Pharm Sci 10:153–158

    CAS  PubMed  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray AS, Yang Z, Shi J, Hobbs A, Schinazi RF, Chu CK, Anderson KS (2002) Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT with carbovir triphosphate. Biochemistry 41:5150–5162

    Article  CAS  PubMed  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  PubMed  Google Scholar 

  • Sela M (1962) Inhibition of ribonuclease by copolymers of glutamic acid and aromatic amino acids. J Biol Chem 237:418–421

    CAS  PubMed  Google Scholar 

  • Shwartzman G (1925) Studies on regeneration of bacteriophage: I. The influence of partial anaerobiosis upon regeneration of a highly diluted lytic principle. J Exp Med 42:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeaton JR, Elliott WH (1967) Isolation and properties of a specific bacterial ribonuclease inhibitor. Biochim Biophys Acta 145:547–560

    Article  CAS  PubMed  Google Scholar 

  • Smith MG (1977) In vivo transfer of an R factor within the lower gastro-intestinal tract of sheep. J Hyg (Lond). 79:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierum R, Burgemeister R, van Helvoort A, Peijnenburg A, Schütze K, Seidelin M, Vang O, van Ommen B (2001) Functional food ingredients against colorectal cancer. An example project integrating functional genomics, nutrition and health. Nutr Metab Cardiovasc Dis 11:94–98

    CAS  PubMed  Google Scholar 

  • Storck T, von Brevern MC, Behrens CK, Scheel J, Bach A (2002) Transcriptomics in predictive toxicology. Curr Opin Drug Discov Devel 5:90–97

    CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Tabarrini O, Cecchetti V, Fravolini A, Nocentini G, Barzi A, Sabatini S, Miao H, Sissi C (1999) Design and synthesis of modified quinolones as antitumoral acridones. J Med Chem 42:2136–2144

    Article  CAS  PubMed  Google Scholar 

  • Tan CK, Civil R, Mian AM, So AG, Downey KM (1991) Inhibition of the RNase H activity of HIV reverse transcriptase by azidothymidylate. Biochemistry 30:4831–4835

    Article  CAS  PubMed  Google Scholar 

  • Tanzi MG, Gabay MP (2002) Association between honey consumption and infant botulism. Pharmacotherapy 22:1479–1483

    Article  PubMed  Google Scholar 

  • Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T (2004) Ciprofloxacin-protected gold nanoparticles. Langmuir 20:1909–1914

    Article  CAS  PubMed  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. The Lancet 2:1233–1282

    Google Scholar 

  • Twort FW, Mellanby E (1912) On creatin-destroying bacilli in the intestine, and their isolation. J Physiol 44:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vattem DA, Mihalik K, Crixell SH, McLean RJ (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310

    Article  CAS  PubMed  Google Scholar 

  • Velthuisen EJ, Johns BA, Gerondelis P, Chen Y, Li M, Mou K, Zhang W, Seal JW, Hightower KE, Miranda SR, Brown K, Leesnitzer L (2014) Pyridopyrimidinone inhibitors of HIV-1 RNase H. Eur J Med Chem 83:609–616

    Article  CAS  PubMed  Google Scholar 

  • Vert M (1986) Polyvalent polymeric drug carriers. Crit Rev Ther Drug Carrier Syst 2:291–327

    CAS  PubMed  Google Scholar 

  • Villa TG, Veiga-Crespo P (2010) Enzybiotics. antibiotic enzymes as drugs and therapeutics. Wiley, Hoboken

    Google Scholar 

  • Vinals C, Gaulis S, Coche T (2001) Using in silico transcriptomics to search for tumor-associated antigens for immunotherapy. Vaccine 19:2607–2614

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (2001) Achilles’ heel of cancer? Nature 412:865–866

    Article  CAS  PubMed  Google Scholar 

  • Vuillemin (1890) Antibiosis. compte rendu de l’Assoc Française pour l’Avancem des Sci ii, 526 (OED)

    Google Scholar 

  • Wells DM, James OB (1973) Transmission of infectious drug resistance from animals to man. J Hyg (Lond) 71:209–215

    Article  CAS  Google Scholar 

  • Williams P (2002) Quorum sensing: an emerging target for antibacterial chemotherapy? Expert Opin Ther Targets 6:257–274

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Clarke PA (2001) Innovative cancer drug targets: genomics, transcriptomics and clinomics. Expert Opin Pharmacother 2:911–915

    Article  CAS  PubMed  Google Scholar 

  • Yoder-Himes DR, Konstantinidis KT, Tiedje JM (2012) Identification of potential therapeutic targets for Burkholderia cenocepacia by comparative transcriptomics. PLoS ONE 5:e8724

    Article  Google Scholar 

  • Younson J, Kelly C (2004) The rational design of an anti-caries peptide against Streptococcus mutans. Mol Divers 8:121–126

    Article  CAS  PubMed  Google Scholar 

  • Yuneva M (2008) Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle 7:2083–2089

    Article  CAS  PubMed  Google Scholar 

  • Zsolnai T (1959a) Search for new tuberculostatics. VI. Some newer derivatives of isoniazid. Zentralbl Bakteriol 175:269–281

    CAS  Google Scholar 

  • Zsolnai T (1959b) Search for new tuberculostatics. VIII. Imidazoline and benzimidazole derivatives containing phenolic hydroxyl groups. Zentralbl Bakteriol 175:553–557

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás G. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villa, T.G., Viñas, M. (2016). Introductory Chapter. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_1

Download citation

Publish with us

Policies and ethics