Skip to main content

Advertisement

Log in

Heterogeneity of osteoporotic syndromes and the response to calcitonin therapy

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

In the past, the osteoporotic syndrome has been variably classified as “senile,” “postmenopausal,” “involutional,” “Type I,” and “Type II,” primarily on the basis of age, fracture incidence patterns, and/or fracture sites. Histological analyses of bone biopsy specimens from osteoporotic individuals also reveal a wide spectrum of cellular activity and rates of bone formation and resorption. These range from those that show an abundance of osteoblasts and osteoclasts with increments in both bone formation and bone turnover (i.e., “active” or “high-turnover” osteoporosis) to others demonstrating minimal cellular activity and relatively little active bone formation or resorption (“inactive” or “low-turnover” osteoporosis). The varied states of bone activity are reflected in associated changes in noninvasive biochemical markers of bone turnover such as circulating bone-gla-protein (BGP) or the urinary hydroxyproline/creatinine ratio (OH−Pr/Cr). Both BGP and OH−Pr/Cr are elevated in patients with high-turnover osteoporotic syndromes. The significance of this mode of categorizing osteoporotic patients is exemplified by the response to remedial therapy such as salmon calcitonin. Recent studies demonstrate a striking sensitivity of patients with high-turnover osteoporosis to calcitonin, with as much as 22% increments in vertebral bone mass recorded during a 12-month therapeutic interval. These promising results should also be compared with other forms of therapy in which an increase in vertebral bone mass of only 7–8% was sufficient to cause a significant decrease in the incidence of vertebral fracture rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisson R, Morandi A, Vecchini L (1982) Synthetic salmon calcitonin treatment of choice in Sudeck's atrophy disease. Minerva Med 2:1065–1069

    Google Scholar 

  2. Eufemio MA (1990) Advances in the therapy of osteoporosis. Geriatric Med Today 9:41–56

    Google Scholar 

  3. Rico H, Hernandez ER, Diaz-Mediavilla J, Alvarez A, Martinez R, Espinos D (1990) Treatment of multiple myeloma with nasal spray calcitonin: A histomorphometric and biochemical study. Bone Miner 8:231–237

    Article  PubMed  CAS  Google Scholar 

  4. Whyte MP, Bergfeld MA, Murphy WA, Teitelbaum SL, Avioli LV (1982) Postmenopausal osteoporosis. A heterogeneous disorder assessed by histomorphometric analysis of iliac crest bone from untreated patients. Am J Med 72:193–202

    Article  PubMed  CAS  Google Scholar 

  5. Brown JP, Malaval L, Chapuy MC, Delmas PD, Edouard C, Meunier PJ (1984) Serum bone Gla-protein: A specific marker for bone formation in postmenopausal osteoporosis. Lancet 1:1091–1093

    Article  PubMed  CAS  Google Scholar 

  6. Pacifici R, Rifas L, McCracken R, Vered I, McMurtry C, Avioli LV, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin-1 release. Proc Natl Acad Sci 86:2398–2402

    Article  PubMed  CAS  Google Scholar 

  7. Pacifici R, Rifas L, Teitelbaum S, Alatopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci 84:4616–4620

    Article  PubMed  CAS  Google Scholar 

  8. Parfitt AM, Simon LS, Villanueva AR, Krane SM (1987) Procollagen type 1 carboxyterminal extension peptide in serum as a marker of collagen biosynthesis in bone: Correlation with iliac bone formation rates and comparison with total alkaline phosphatase. J Bone Mine Res 2:427–436

    CAS  Google Scholar 

  9. Fogelman I, Cohen HN, Bessent RG, Hart DM, Lindsay R (1980) Skeletal uptake of diphosphonate. Method for prediction of postmenopausal osteoporosis. Lancet 2:667–670

    Article  PubMed  CAS  Google Scholar 

  10. Martin P, Schoutens A, Manicourt D, Bergmann P, Fuss M, Verbanck M (1983) Whole body and regional retention of99mTc-labelled pyrophosphate at 24 hours: Physiological basis of the method for assessing the metabolism of bone in disease. Calcif Tissue Int 35:37–42

    Article  PubMed  CAS  Google Scholar 

  11. Riggs BL, Melton LJ III (1983) Heterogeneity of involutional osteoporosis: Evidence for two osteoporosis syndromes. Am J Med 75:899–903

    Article  PubMed  CAS  Google Scholar 

  12. Riis BJ, Rodbro P, Christiansen C (1986) The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of postmenopausal osteoporosis. Calcif Tissue Int 38:318–322

    Article  PubMed  CAS  Google Scholar 

  13. Reginster JY, Deroisy R, Albert A, Denis D, Lecart MP, Collette J, Franchimont P (1989) Relationship between whole plasma calcitonin levels, calcitonin secretory capacity, and plasma levels of estrone in healthy women and postmenopausal osteoporotics. J Clin Invest 83:1073–1077

    PubMed  CAS  Google Scholar 

  14. Manolagas SC, Anderson DC, Lindsay R (1979) Adrenal steroids and the development of osteoporosis in oophorectomised women. Lancet 2:597–600

    Article  PubMed  CAS  Google Scholar 

  15. Chantraine A, Nusgens B, Lapiere Ch M (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327

    Article  PubMed  CAS  Google Scholar 

  16. Chantraine A, Heynen G, Franchimont P (1979) Bone metabolism, parathyroid hormone, and calcitonin in paraplegia, Calcif Tissue Int 27:199–204

    Article  PubMed  CAS  Google Scholar 

  17. Schoutens A, Verhas M, Dourov N, Bergmann P, Caulin F, Verschaeren A, Mone M, Heilpron A (1988) Bone loss and bone blood flow in paraplegic rats treated with calcitonin, diphosphonate, and indomethacin. Calcif Tissue Int 42:136–143

    Article  PubMed  CAS  Google Scholar 

  18. Vagelos PR, Henneman PH (1957) Effect of sodium phytate on the hypercalciuria of acute quadriplegia due to poliomyelitis. N Engl J Med 256:773–776

    Article  PubMed  CAS  Google Scholar 

  19. Minaire P, Meunier P, EdouardC, Bernard J, Courpron P, Bourret J (1974) Quantitative histological data on disuse osteoporosis. Calcif Tissue Res 17:57–73

    Article  PubMed  CAS  Google Scholar 

  20. Jenkins DP, Cochran TH (1969) Osteoporosis: The dramatic effect of disuse on an extremity. Clin. Orthop Rel 64:127–134

    Google Scholar 

  21. Donaldson CL, Hulley S, Vogel JM, Hattner H, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19:1071–1084

    Article  PubMed  CAS  Google Scholar 

  22. Podenphant J, Johansen JS, Thomsen K, Riis BJ, Leth A, Christiansen C (1987) Bone Turnover in spinal osteoporosis, J Bone Min Res 2:497–503

    Article  CAS  Google Scholar 

  23. Minaire P, Meunier P, Depassio J, Pilonchery G, Caulin F (1984) Treatment of active osteoporosis with calcitonin. In: Christiansen C, Arnaud CD, Nordin BEC, Parfitt AM, Peck WA, Riggs BL (eds) Osteoporosis 1, Norhaven A/S, Viborg, pp 613–615

    Google Scholar 

  24. Reginster JY, Albert A, Lecart MP, Lambelin P, Denis D, Deroisy R, Fontaine MA, Franchimont P (1987) One-year controlled randomised trial of prevention of early postmenopausal bone loss by intranasal calcitonin. Lancet 2:1481–1483

    Article  PubMed  CAS  Google Scholar 

  25. Weiss RE, Singer FR, Gorn AH, Hofer DP, Nimni ME (1981) Calcitonin stimulates bone formation when administered prior to initiation of osteogenesis. J Clin Inv 68:826–828

    Google Scholar 

  26. Overgaard K, Riis BJ, Christiansen C, Hansen MA (1989) Effect of salcatonin given intranasally on early postmenopausal bone loss. Br Med J 299:477–479

    Article  CAS  Google Scholar 

  27. Mazzuoli GF, Tabolli S, Bigi F, Valtorta C, Minisola S, Diacinti D, Scarnecchia L, Bianchi G, Piolini M, Dell'Acqua S (1990) Effect of salmon calcitonin on the bone loss induced by ovariectomy. Calcif Tissue Int 47:209–214

    Article  PubMed  CAS  Google Scholar 

  28. Gutteridge DH, Nicholson GC, Gruber HE, Michell P, Kent GN, Price RI (1984) A case of severed high-remodelling idiopathic osteoporosis effectively treated with calcitonin. In: Christiansen C., Arnaud CD, Nordin BEC, Parfitt AM, Peck WA, Riggs BL (eds) Osteoporosis I, Norhaven A/S, Viborg, pp 531–532

    Google Scholar 

  29. Civitelli R, Gonnelli S, Zecchei F, Bigazzi S, Vattimo A, Avioli LV, Gennari C (1988) Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J. Clin Invest 82:1268–1274

    Article  PubMed  CAS  Google Scholar 

  30. Overgaard K, Hansen MA, Nelsen V-AH, Riis BJ, Christiansen C (1990) Discontinuous calcitonin treatment of established osteoporosis— Effects of withdrawal of treatment. Am J Med 89:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Ettinger B, Genant HK, Cann CE (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Int Med 102:319–324

    PubMed  CAS  Google Scholar 

  32. Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR (1980) Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med 303:1195–1198

    Article  PubMed  CAS  Google Scholar 

  33. Paganini A, Ross RK, Gerkins VR, Henderson BE, Arthur M, Mack TM (1981) 95:28–31

  34. Naessen T, Persson I, Adami H-O, Bergstrom R, Bergkvist L (1990) Hormone replacement therapy and the risk for first hip fracture. Ann Intern Med 113:95–103

    PubMed  CAS  Google Scholar 

  35. Hutchinson TA, Polansky SM, Feinstein AR (1979) Postmenopausal oestrogens protect against fractures of hip and distal radius. Lancet 2:705–709

    Article  PubMed  CAS  Google Scholar 

  36. Avioli LV (1988) Rationale for the use of calcitonin in postmenopausal osteoporosis. Ann Chir Cynaecol 77:224–228

    CAS  Google Scholar 

  37. Hindley AC, Hill EB, Leyland MJ (1982) A double-blind controlled rial of salmon calcitonin in pain due to malignancy. Cancer Chemother Pharmacol 9:71–74

    Article  PubMed  CAS  Google Scholar 

  38. Graf E, Holser E, Chayen R (1985) Cortisol and endorphin increase produced by calcitonin administration. Isr J Med Sci 21:483–484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avioli, L.V. Heterogeneity of osteoporotic syndromes and the response to calcitonin therapy. Calcif Tissue Int 49 (Suppl 2), S16–S19 (1991). https://doi.org/10.1007/BF02561372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561372

Key words

Navigation