Skip to main content
Log in

Uniform pulsatile flow of an incompressible liquid in a tube of parallelogram cross-section

  • Published:
Forschung im Ingenieurwesen A Aims and scope Submit manuscript

Abstract

Laminar steady and pulsatile flow in a tube of parallogram cross-section has been derived analytically for incompressible viscous liquid. Velocity profiles have been determined and the influence of various parameters, such as skew angle, side ratio and forced frequency parameter Ωa2/v have been determined. In addition the flow resistance is presented for various side ratios as a function of the skew angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uschida, S.: The pulsating viscous flow superimposed on the steady-laminar motion of incompressible fluid in a circular pipe. ZAMM Vol. 8 (1956) pp. 403/22.

    Google Scholar 

  2. Bauer, H.F.: Pulsatile flow in a straight circular pipe with reabsorption across the wall. Ing. Arch. 45 (1976) pp. 1/15

    Article  Google Scholar 

  3. Bauer, H.F.: Incompressible uniform pulsatile flow between parallel walls and in tubes of rectangular cross-section. Forschungsbericht der Hochschule der Bundes-wehr München, LRT-WE-9-FB-14-1981.

  4. Flügge, S. (ed.): Fluiddynamics II. Encyclopedia of Physics Vol. VIII/2. pp. 67/71. Berlin: Springer-Verlag 1963.

    Google Scholar 

  5. Euler, L.: Principia pro motu sanguinis per arterias determinando. Opera posthuma mathematica et physica anno 1844 detecta, editeruntP.H. Fuss et N. Fuss, Petropoli, Apud Eggers et socios, Vol. 2 (1862) pp. 814/23.

    Google Scholar 

  6. Weber, E.H.: Über die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre. Ber. Verh. Kgl. Sächs. Ges. Wiss., Math.-Phys. Kl. 1850.

  7. Weber, W.: Theorie der durch Wasser oder andere incompressible Flüssigkeiten in elastischen Röhren fortgepflanzte Wellen. Ber. Verh. Sächs. Ges. Wiss., Math.-Phys. Kl. 18, (1866) pp. 353/57.

    Google Scholar 

  8. Resal, H.: Sur les petits mouvements d’un fluid incompressible dans un tuyau élastique. C.R. Acad. Sci. 82 (1876) pp. 698/99.

    Google Scholar 

  9. Korteweg, D.J.: Über die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Anm. Phys. Chem. Neue Folge 5 (1878) pp. 525/42.

    Google Scholar 

  10. Moens, A.I.: Die Pulskurve. Leyden: E.J. Brill, NV 1878.

    Google Scholar 

  11. Young, Th.: Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil. Trans. Roy. Sci. London 88 (1808) pp. 164/86.

    Article  Google Scholar 

  12. Womersley, J.R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright Air Development Center Tech. Rep. No 56-684.

  13. Attinger, E.O. (ed.): Pulsatile blood flow. New York: McGraw Hill 1964.

    Google Scholar 

  14. McDonald, D.A.: Blood flow in arteries, 2nd ed. Williams and Wilkins, Baltimore, Maryland; Edward Arnold (Publishers) Ltd., London 1974.

    Google Scholar 

  15. Fung, Y.C. (ed.): Biomechanics. Am. Soc. Mech. Eng., New York 1964.

    Google Scholar 

  16. ASME-Biomedical Fluid Mechanics Symposium. Am. Soc. Mech. Eng., New York 1966.

  17. Fung, Y.C.: Biomechanics. Its scope, history and some problems of continuum mechanics in physiology. Appl. Mech. Rev. 21 (1968) pp. 1/20.

    Google Scholar 

  18. Copeley, A.L. (ed.): Hemorheology. Oxford: Pergamon Press 1968.

    Google Scholar 

  19. Fung, Y.C., et al. (ed.): Biomechanics. Its foundations and objectives. Englewood Cliffs, New Jersey: Prentice Hall 1971.

    Google Scholar 

  20. Fung, Y.C.: Biomechanics: A survey of the blood flow problem. Advances in Applied Mechanics (C.S. Yih, Ed.) Vol. 11, 1971, Academic Press.

  21. Rubinov, S.I., andJ.B. Keller: Wave propagation in a fluid-filled tube. J. Acoust. Soc. Am. 50 (1971) pp. 198/223.

    Article  Google Scholar 

  22. Lighthill, J.: Physiological fluid mechanics. CISM, Courses and Lectures, No. 111, Udine, 1971 Wien: Springer 1971.

    Google Scholar 

  23. Lieberstein, H.M.: Mathematical physiology (Blood flow and electrically active cells). New York: Academican Elsevier Publ. Comp. 1973.

    Google Scholar 

  24. Lighthill, J.: Mathematical biofluiddynamics. Chapters 10, 12, 13, SIAM 1975.

  25. Ribinov, S.I., andJ.B. Keller: Wave propagation in a viscoelastic tube containing a viscous fluid. J. Fluid Mech., Vol. 88/1 (1978) pp. 181/203.

    Google Scholar 

  26. Bauer, H.F., St. Metten, andJ. Siekmann: Dynamic behavior of distensible fluid lines carrying a pulsating incompressible liquid. ZAMM 60 (1980) pp. 221/34.

    Google Scholar 

  27. Bauer, H.F.: Dynamische Gleichungen eines Förderleitungsystems einer Rakete. Raumfahrtforschung Vol. 17 (1973) No. 5, pp. 247/55.

    Google Scholar 

  28. Kirchhoff, G.: Über den Einfluß der Wärmeleitung in einem Gase auf die Schallbewegung. Ann. Phys. Chem. 134 (1868) pp. 177/93.

    Google Scholar 

  29. Lord Rayleigh: The theory of sound. Dover 1896.

  30. Iberall, A.S.: Attenuation of oscillatory pressures in instrument lines. Nat. Bur. Stds. J. Res. 45 (1950) pp. 85/108.

    Google Scholar 

  31. Shields, F.D., K.P. Lee, andW.J. Wiley: Numerical solution for sound velocity and absorption in cylindrical tubes. J. Acoust. Soc. Am. 37 (1965) pp. 724/29.

    Article  Google Scholar 

  32. Tijdeman, I.I.: Remarks on the frequency response of pneumatic lines. Trans. ASME, J. Basic Engng. D 91 (1969) pp. 325/27.

    Google Scholar 

  33. Elco, R.A., andW.F. Hughes: Acoustic waveguide mode interfeence and damping with viscous fluids. 4th Int. Congr. Acoustics, Copenhagen 1962, pp. 21/28.

  34. Cohen, H. andY. Tu: Viscosity and boundary: effects in the dynamic behavior of hydraulic systems. Trans. ASME, J. Basic Engng. D 84 (1962) pp. 593/601.

    Google Scholar 

  35. Gerlach, C.R., andJ.D. Parker: Wave propagation in viscous fluid lines including higher mode effects. Trans. ASME, J. Basic Engng. D 89 (1967) pp. 782/88.

    Google Scholar 

  36. Scarton, H.A., andW.I. Rouleau: Axisymmetric waves in compressible Newtonian liquids contained in rigid tubes: Steady-periodic mode shapes and dispersion by the method of eigenvalues. J. Fluid Mech. Vol. 58 (1973) No. 3, pp. 595/621.

    Article  Google Scholar 

  37. Bauer, H.F.: Uniform pulsatile flow of an incompressible liquid in a tube of parallelogram cross-section. Forschungsbericht Universität der Bundeswehr München, Institut für Raumfahrttechnik LRT-WE-9-FB-10 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F. Uniform pulsatile flow of an incompressible liquid in a tube of parallelogram cross-section. Forsch Ing-Wes 53, 149–155 (1987). https://doi.org/10.1007/BF02560947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02560947

Keywords

Navigation