Skip to main content
Log in

A pseudo-complementary finite element approach for the vibration analysis of thin plates in bending

  • Published:
Forschung im Ingenieurwesen A Aims and scope Submit manuscript

Abstract

The present paper is concerned with the numerical analysis of the steady-state and transient response of thin elastic plates. Based on a modification of the variational principle due to Hamilton wherein in contrast to the classical formulation not only displacements but also stress resultants represent independent (primal) variables, a new mixed hybrid finite element model is proposed. Introducing separate approximations for the displacement and stress field, stiffness and consistent mass matrix of a triangular plate element with three kinematic degrees of freedom per nodal point are obtained. The performance of the new element scheme is evaluated on the basis of several test examples representing a broad range of circumstances encountered in linear elastokinetic thin plate analysis. The obtained numerical results demonstrate that in terms of efficiency, reliability and accuracy the new element scheme competes most favorably with a series of well-established plate elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leissa, A.W.: Vibration of plates. Report NASA SP-160, Washington, D.C. 1969.

  2. Malsch, H.: Stabilitäts- und Schwingungsuntersuchungen von ausgesteiften Platten nach einer Finite-Element-Methode. Diss. TU Braunschweig 1977.

  3. Dungar, R., R.T. Severn andP.R. Taylor: Vibration of plate and shell structures using triangular finite elements. J. Strain Analysis Vol. 2 (1967) pp. 73/83.

    Google Scholar 

  4. Röhrle, H.: Reduktion von Freiheitsgraden bei Strukturdynamik-Aufgaben. Forschr.-Ber. VDI-Z., Ser. 1/72. Düsseldorf: VDI-Verlag, 1980.

    Google Scholar 

  5. Talaslidis, D.: Inkrementelle Schalentheorien und numerische Behandlung diskretisierter Eigenwertprobleme der Strukturmechanik auf der Grundlage verallgemeinerter Arbeitsaussagen. Diss. Ruhr-Univ. Bochum 1978.

  6. Barnard, A.J. andP.W. Sharman: Elasto-plastic response of plates to blast loading. Report AD TT 7313, Laughborough Univ. 1973.

  7. Dirr, B. andH. Waller: Zum Problem der Berechnung der Eigenfrequenzen und Eigenformen elastischer ebener Kontinua. Ingenieur-Archiv Vol. 43 (1974) pp. 74/91.

    Article  Google Scholar 

  8. Reddy, J.N. andC.S. Tsay: Stability and vibration of thin rectangular plates by simplified mixed finite elements. J. Sound Vibration Vol. 55 (1977) pp. 289/302.

    Article  Google Scholar 

  9. Cowper, G.R., E. Kosko, G.M. Lindberg andM.D. Olson: Static and dynamic applications of a high-precision triangular plate bending element. AIAA J. Vol. 7 (1969) pp. 1957/65.

    Article  Google Scholar 

  10. Minich, M.D. andC.C. Chamis: Doubly-curved variable-thickness isoparametric heterogeneous finite element. Computers & Structures Vol. 7 (1977). pp. 295/301.

    Article  Google Scholar 

  11. Martins, R.A.F. andD.R.J. Owen: Thin plate semiloof element for structural analysis—including stability and natural vibrations. Int. J. num. Meth. Engng. Vol. 12 (1978) pp. 1667/76.

    Article  Google Scholar 

  12. Karamanlidis, D. andH. Le The: Berechnung dünner Plattentragwerke nach dem Finite-Elemente-Verfahren. VDI-Forschungsheft 621. Düsseldorf: VDI-Verlag 1984.

    Google Scholar 

  13. Fried, I.: Residual energy balancing technique in the generation of plate bending finite elements. Computers & Structures Vol. 4 (1974) pp. 771/78.

    MathSciNet  Google Scholar 

  14. Tong, P., S.T. Mau andT.H.H. Pian: Derivation of geometric stiffness and mass matrices for finite element hybrid models. Int. J. Solids & Structures Vol. 10 (1974) pp. 919/32.

    Google Scholar 

  15. Prager, W.: Variational principles for elastic plates with relaxed continuity requirements. Int. J. Solids & Structures Vol. 4 (1968) pp. 837/44.

    Google Scholar 

  16. Bufler, H.: Die verallgemeinerten Variationsgleichungen der dünnen Platte bei Zulassung diskontinuierlicher Schnittkräfte und Verschiebungen. Ingenieur-Archiv Vol. 39 (1970) pp. 330/40.

    Google Scholar 

  17. Batoz, J.-L., K.-J. Bathe andL.-W. Ho: A search for the optimum three-node triangular plate bending element. Report No. 82448-8, M.I.T. 1978

  18. MRI/STARDYNE, Static and dynamic structural analysis systems; Finite element demonstration problems. Control Data Corp., Minneapolis 1973.

    Google Scholar 

  19. Au, N.M. andL.S. Gould: ASAS validation manual. Atkins R & D, England 1983.

    Google Scholar 

  20. SESAM '80 acceptance tests. Det Norske Veritas Research Division, Hovik 1983.

  21. PAFEC 75; Theory-results. Nottingham Univ. 1975.

  22. ANSYS engineering analysis system verification manual. Swanson Analysis Systems, Inc. 1976.

  23. Clough, R.W. andC.A. Felippa: A refined quadrilateral element for analysis of plate bending. Proc. 2nd Conference on Matrix Methods in Structural Mechanics, Ohio 1968.

  24. Warburton, A.B. The dynamic behaviour of structures, 2nd ed. Oxford, New York, Toronto, Sydney, Paris, Frankfurt: Pergamon Press 1976.

    Google Scholar 

  25. Tabarrok, B. andD.S. Sodhi: On the generalization of stress function procedure for dynamic analysis of plates. Report UTME-TP 7201, Univ. Toronto 1972.

  26. Tabarrok, B.: Complementary energy method in elastodynamics. Report UTME-TP 7101, Univ. Toronto 1971.

  27. Sakaguchi, R.L. andB. Tabarrok: Calculations of plate frequencies from complementary energy formulation. Int. J. num. Meth. Engng. Vol. 2 (1970).

  28. Goudreau, G.L. andR.L. Taylor: Evaluation of numerical integration methods in elastodynamics. Comp. Meths. Appl. Mech. Eng. Vol. 2 (1972) pp. 69/97.

    Google Scholar 

  29. Nickell, R.E.: Direct integration methods in structural dynamics. J. Eng. Mech. Div., ASCE Vol. 99 (1973) pp. 303/17.

    Google Scholar 

  30. McNamara, J.F.: Solution schemes for problems of nonlinear structural dynamics. J. Pressure Vessel Tech., ASME Vol. 97 (1974) pp. 96/102.

    Google Scholar 

  31. Gorman, D.J.: Free vibration analysis of rectangular plates. New York, Amsterdam, Oxford: Elsevier 1982.

    MATH  Google Scholar 

  32. Bathe, K.-J. andS. Bolourchi: A geometric and material nonlinear plate and shell element. Computers and Structures Vol. 11 (1980) pp. 23/48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamanlidis, D. A pseudo-complementary finite element approach for the vibration analysis of thin plates in bending. Forsch Ing-Wes 51, 69–78 (1985). https://doi.org/10.1007/BF02558400

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02558400

Keywords

Navigation