Skip to main content
Log in

Gustatory Responsiveness to food-associated acids in the spider monkey (Ateles geoffroyi)

  • Short Communication
  • Published:
Primates Aims and scope Submit manuscript

Abstract

The gustatory responsiveness of four adult spider monkeys to five food-associated acids was assessed in two-bottle preference tests of brief duration (3 min). The animals were given the choice between a 30 mM sucrose solution and defined concentrations of citric acid, ascorbic acid, malic acid, acetic acid, or tannic acid dissolved in a 30 mM sucrose solution. With this procedure,Ateles geoffroyi was found to significantly discriminate concentrations as low as 5 mM ascorbic acid, citric acid, and acetic acid, 10 mM malic acid, and 0.1 mM tannic acid from the alternative stimulus. With the latter two substances, the monkeys rejected all suprathreshold concentrations tested, whereas with the former three substances, the animals showed an inverted U-shaped function of preference, i.e. they rejected high concentrations, but significantly preferred low but detectable concentrations of these acidic tastants over the alternative sweet stimulus. The results showed (1) the spider monkey to respond to the same range of acid concentrations as other nonhuman primate species; (2) thatAteles geoffroyi, is able to detect food-associated acids at concentrations well below those present in most fruits; and (3) that unlike most other primate species tested so far, spider monkeys do not generally reject acidic tastants but show a substanceand concentration-dependent change in responsiveness that may range from rejection to preference. The results support the assumptions that spider monkeys may use sourness and/or astringency of food-associated acids as a criterion for food selection, and that the gustatory responsiveness ofAteles geoffroyi to acidic tastants might reflect an evolutionary adaptation to frugivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albach, R. F.;Redman, G. H.;Cruse, R. R.;Petersen, H. D., 1981. Seasonal variation of bitterness components, pulp, and vitamin C in Texas commercial citrus juices.J. Agric. Food Chem., 29: 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Astm 1973. Compilation of odor and taste threshold values data. Data Series DS 48. Amer. Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Clutton-Brock, T. H. (ed.) 1977.Primate Ecology: Studies of Feeding and Ranging Behaviour in Lemurs, Monkeys and Apes. Academic Press, New York.

    Google Scholar 

  • Gallina, D. L.;Ausman, L. M. 1979. Selected aspects of the metabolic behavior in the squirrel monkey. In:Primates in Nutritional Research,Hayes,K. C. (ed.), Academic Press, New York, pp. 225–247.

    Google Scholar 

  • Glaser, D. 1986. Geschmacksforschung bei Primaten.Vjschr. Naturforsch. Ges. Zurich, 131: 92–110.

    Google Scholar 

  • Glaser, D. 1989. Biological aspects of taste in South American primates.Medio Ambiente, 10: 107–112.

    Google Scholar 

  • Glaser, D.;Hobi, G. 1985. Taste responses in primates to citric and acetic acid.Int. J. Primatol., 6: 395–398.

    Google Scholar 

  • Goatcher, W. D.;Church, D. C. 1970. Taste responses in ruminants, IV: Reactions of pygmy goats, normal goats, sheep and cattle to acetic acid and quinine hydrochloride.J. Anim. Sci., 31: 373–382.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L.;Swain T. 1965. The inhibition of enzymes by tannins.Phytochemistry, 4: 185–192.

    Article  CAS  Google Scholar 

  • Hartwig, P.;McDaniel, M. R. 1995. Flavor characteristics of lactic, malic, citric, and acetic acids at various pH levels.J. Food Sci., 60: 384–388.

    Article  CAS  Google Scholar 

  • Hellekant, G.;Hladik, C. M.;Dennys, V.;Simmen, B.;Roberts, T. W.;Glaser, D.;DuBois, G.;Walters, D. E. 1993. On the sense of taste in two Malagasy primates (Microcebus murinus andEulemur mongoz).Chem. Senses, 18: 307–320.

    Article  Google Scholar 

  • Kinzey, W. G. 1997. Ateles. In:New World Primates,Kinzey,W. G. (ed.), Aldine de Gruyter, New York, pp. 192–199.

    Google Scholar 

  • Lang, C. M. 1970. Organoleptic and other characteristics of diet which influence acceptance by nonhuman primates. In:Feeding and Nutrition of Nonhuman Primates,Harris,R. S. (ed.), Academic Press, New York, pp. 263–275.

    Google Scholar 

  • Laska, M. 1994. Taste difference thresholds for sucrose in squirrel monkeys (Saimiri sciureus).Folia Primatol., 63: 144–148.

    PubMed  CAS  Google Scholar 

  • Laska, M. 1996. Taste preference thresholds for food-associated sugars in the squirrel monkey,Saimiri sciureus.Primates, 37: 93–97.

    Google Scholar 

  • Laska, M. 1997. Taste preferences for five food-associated sugars in the squirrel monkey (Saimiri sciureus).J. Chem. Ecol., 23: 659–672.

    Article  CAS  Google Scholar 

  • Laska, M. 1999. Taste responsiveness to food-associated acids in the squirrel monkey (Saimiri sciureus).J. Chem. Ecol., 25: 1623–1632.

    Article  CAS  Google Scholar 

  • Laska, M.;Carrera Sanchez, E.;Rodriguez Luna, E. 1996. Gustatory thresholds for food-associated sugars in the spider monkey (Ateles geoffroyi).Amer. J. Primatol., 39: 189–193.

    Article  Google Scholar 

  • Laska, M.;Carrera Sanchez, E.;Rodriguez Luna, E. 1998. Relative taste preferences for food-associated sugars in the spider monkey (Ateles geoffroyi).Primates, 39: 91–96.

    Article  Google Scholar 

  • Laska, M.;Scheuber, H.-P.;Carrera Sanchez, E.;Rodriguez Luna, E. 1999. Taste difference thresholds for sucrose in two species of nonhuman primates.Amer. J. Primatol., 48: 153–160.

    Article  CAS  Google Scholar 

  • Lyman, B. J.;Green, B. G. 1990. Oral astringency: effects of repeated exposure and interactions with sweeteners.Chem. Senses, 15: 151–164.

    Article  CAS  Google Scholar 

  • Marks, D.;Swain, T.;Goldstein, S.;Richard, A.;Leighton, M. 1988. Chemical correlates of rhesus monkey food choice: the influence of hydrolysable tannins.J. Chem. Ecol., 14: 213–235.

    Article  CAS  Google Scholar 

  • Milton, K.;Jenness, R. 1987. Ascorbic acid content of neotropical plant parts available to wild monkeys and bats.Experientia, 43: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, S.;Shaw, P. E. (eds.) 1980,Tropical and Subtropical Fruits: Composition, Nutritive Values, Properties and Uses. Avi Publ., Westport, Connecticut.

    Google Scholar 

  • Plata-Salaman, C. R.;Scott, T. R.;Smith-Swintosky, V. L. 1995. Gustatory neural coding in the monkey cortex: acid stimuli,J. Neurophysiol., 74: 556–564.

    PubMed  CAS  Google Scholar 

  • Portman, O. W. 1970. Nutritional requirements of nonhuman primates. In:Feeding and Nutrition of Nonhuman Primates,Harris,R. S. (ed.), Academic Press, New York, pp. 117–142.

    Google Scholar 

  • Pritchard, T. C.;Bowen, J. A.;Reilly, S. 1995. Taste thresholds in non-human primates.Chem. Senses, 20: 760.

    Google Scholar 

  • Siegel, S.;Castellan, N. J. 1988.Nonparametric Statistics for the Behavioral Sciences. McGraw Hill, New York.

    Google Scholar 

  • Souci, S. W.;Fachmann, W.;Kraut, H. (eds.). 1989.Food Composition and Nutrition Tables. Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Stevens, J. C. 1996. Detection of tastes in mixture with other tastes: issues of masking and aging.Chem. Senses, 21: 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Swain, T. 1979. Tannins and lignins. In:Herbivores: Their Interactions with Secondary Plant Metabolites,Rosenthal,G. A.;Janzen,D. H. (eds.), Academic Press, New York, pp. 657–682.

    Google Scholar 

  • Ulrich, R. 1970. Constituents of fruits, 4: Organic acids. In:The Biochemistry of Fruits and their Products, Vol. 1,Hulme,A. C. (ed.), Academic Press, New York, pp. 89–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Laska, M., Hernandez Salazar, L.T., Luna, E.R. et al. Gustatory Responsiveness to food-associated acids in the spider monkey (Ateles geoffroyi). Primates 41, 213–221 (2000). https://doi.org/10.1007/BF02557803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557803

Key Words

Navigation