Skip to main content

Advertisement

Log in

Reorientable electric dipoles and cooperative phenomena in human tooth enamel

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A preliminary investigation of electric dipole reorientability in human tooth enamel (TE) in comparison to that in hydroxyapatite (OHAp) has been made with the fractional-polarization form of the thermally stimulated currents (TSC) method. The reorientable dipoles are the structural OH ions. The OHAp exhibited compensation phenomena at 211.5°C and at 356°C which are associated here with the hexagonal form becoming quasi-statically stabilized and dynamically stabilized, respectively, against the monoclinic form. TE specimens were pretreated at various temperatures. All showed the onset of cooperative motions that could quasi-statically stabilize the hexagonal form at the same temperature, approximately 212°C, as did OHAp, even though the TE was already statically stabilized in the hexagonal form. Parts of the TSC spectra that did not conform to the 212°C compensation changed progressively with pretreatment temperature. Loss of incorporated H2O is identified as the most probable cause of most of these changes. This work shows considerable promise for TSC as a tool for further quantitative investigation of TE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zielinski M, Kryszewski M (1977) Thermal sampling technique for the thermally stimulated discharge in polymers. Model calculations. Phys Status Solidi (a) 42:305–314

    Article  CAS  Google Scholar 

  2. Dreyfus G, LaCabanne C, Rahal A (1978) Cables a courant continu a isolation synthétique extrudée. Méthode des courants thermostimulés. Revue Générale de l'Electricité 87:870–880

    Google Scholar 

  3. Hitmi N, LaCabanne C, Young RA (1984) TSC study of electric dipole relaxations in chlorapatite. J Phys Chem Solids 45:701–708

    Article  CAS  Google Scholar 

  4. Featherstone JDB (1983) Diffusion phenomena and enamel caries development. Cariology Today. Int'l Congress Zurich, pp 259–268

  5. Arends J, Van Der Berg PJ, Jongebloed WL (1975) Dissolution of hydroxyapatite and fluorapatite single crystals. Colloque International CNRS, No 230 Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologique, CNRS, Paris, pp 389–395

    Google Scholar 

  6. Langdon D, Dykes E, Fernhead RW (1975) Defects, diffusion and dissolution in biological and synthetic apatite. Colloque International CNRS, No 230 Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologique, CNRS, Paris, pp 381–388

    Google Scholar 

  7. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  PubMed  CAS  Google Scholar 

  8. Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: Holly Springs hydroxyapatite. Acta Cryst B25:1534–1544

    Article  CAS  Google Scholar 

  9. Young RA, Sudarsanan K, Mackie PE (1968) Structural origin of some physical property differences among three apatites. Bulletin de la Société Chimique de France (no special) 1760–1763

  10. Mackie PE, Elliott JC, Young RA (1972) Monoclinic structure of synthetic chlorapatite. Acta Cryst B28:1840–1848

    Article  CAS  Google Scholar 

  11. Mackie PE, Elliott JC, Young RA (1973) Monoclinic hydroxyapatite. Science 180:1055–1057

    Article  Google Scholar 

  12. Young RA (1975) Some aspects of crystal structural modeling of biological apatites. Colloques International CNRS No 230 Physico-Chimie et Cristallographie des Apatites d'Interet Biologique, Paris, pp 21–39

    Google Scholar 

  13. Young RA (1980) Large effects from small structural differences in apatites. Proc 2nd Intl Conf Phosphorus Compounds, (April 21–25, 1980, Boston) Institut Mondial du Phosphate, Paris pp 73–88

  14. Young RA, Holcomb DW (1982) Variability of hydroxyapatite preparations. Calcif Tissue Int 34:S17-S32

    PubMed  Google Scholar 

  15. Trombe JC (1972) Contribution a l'étude de la decomposition et de la reactivité de certaines apatites hydroxylées, carbonatées ou fluorées alcalino-terreuses, theśe. Université Paul Sabatier, Toulouse

    Google Scholar 

  16. Young RA, Wiles DB, (1981) Application of the Rietveld method for structure refinement with powder diffraction data. Advances in x-ray analysis 24:1–23

    CAS  Google Scholar 

  17. Mackie PE, Young RA (1980) Crystallography of human tooth enamel: initial structure refinement. Mat Res Bull 15:17–29

    Article  Google Scholar 

  18. Young RA (1974) Implications of atomic substitutions and other structural detail in apatites. J Dent Res 53:193–199

    PubMed  CAS  Google Scholar 

  19. Curzon MEJ, Cutress TW, eds (1983) Trace elements and dental disease. John Wright and Sons, Bristol

    Google Scholar 

  20. Chatain D (1974) Contribution á l'étude des propriétées dielectriques des polyamides, thèse. Université Paul Sabatier, Toulouseh

    Google Scholar 

  21. Zielinski M, Swiderski T, Kryszewski M (1978) Thermal sampling in polymers with distributed relaxations: PMMA. Polymers 19:883–888

    Article  CAS  Google Scholar 

  22. Peacock-Lopez E, Suhl H (1982) Compensation effect in thermally activated processes. Phys Rev B 26:3774–3782

    Article  CAS  Google Scholar 

  23. Hitmi N (1983) Etude des transitions dans les composantes minerale et organique des tissues calcifiés par spectroscopie dielectrique basse frequence, thèse. Université Paul Sabatier, Toulouse

    Google Scholar 

  24. Hitmi N, Chatain D, LaCabanne C, Dugas J, Trombe JC, Rey C, Montel G (1980) TSC study of dipolar reorientations in hydroxyapatites. Solid State Communications 33:1003–1004

    Article  CAS  Google Scholar 

  25. Van Rees HB, Mengeot M, Kostiner E (1973) Monoclinic-hexagonal transition in hydroxyapatite and deuterohydroxyapatite single crystals. Mat Res Bull 8:1307

    Article  Google Scholar 

  26. Freund F, Knobel RM (1977) Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy. J Chem Soc (Dalton) 1136–1140

  27. Young RA, Van der Lugt W, Elliott JC (1969) Mechanism for fluorine inhibition of diffusion in hydroxyapatite. Nature 223:729–730

    Article  PubMed  CAS  Google Scholar 

  28. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  29. Rausch EO (1976) Dielectric properties of chlorapatite, thesis. Georgia Institute of Technology

  30. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Article  PubMed  CAS  Google Scholar 

  31. Lamure-Plaino E (1985) Etude des reorientations dipolaires dans l'email dentaire humain mature par spectroscopie dielectrique, thèse. Université Paul Sabaiter, Toulouse

    Google Scholar 

  32. Young RA, Bartlett ML, Spooner S, Mackie PE, Bonel G (1981) Reversible high temperature exchange of carbonate and hydroxyl ions in tooth enamel and synthetic hydroxyapatite. J Biol Phys 9:1–34

    Article  CAS  Google Scholar 

  33. Little MF, Casciani FS (1966) The nature of water in sound human enamel A preliminary study. Arch Oral Biol 11:565–571

    Article  PubMed  CAS  Google Scholar 

  34. Holcomb DW, Young RA (1984) Role of acid phosphate in hydroxyapatite lattice expansion. Calcif Tissue Int 36:60–63

    Article  PubMed  Google Scholar 

  35. Arends J, Davidson CL (1975) HPO 2−4 content in enamel and artificial carious lesions. Calcif Tissue Res 18:65–79

    Article  PubMed  CAS  Google Scholar 

  36. Hitmi N, LaCabanne C, Bonel G, Young RA (1986) Dipole cooperative motions in an A-type carbonated apatite, Sr10(ASO4)6 CO3. J Phys Chem Solids (in press)

  37. Dibdin GH (1972) The stability of water in human dental enamel. Studies by proton nuclear magnetic resonance. Archs Oral Biology 17:433–437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitmi, N., Lamure-Plaino, E., Lamure, A. et al. Reorientable electric dipoles and cooperative phenomena in human tooth enamel. Calcif Tissue Int 38, 252–261 (1986). https://doi.org/10.1007/BF02556603

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556603

Key words

Navigation