Skip to main content
Log in

Magnetically induced electrokinetic phenomena in the surface layers of zirconia nanoparticles

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Electrokinetic processes on the surface of zirconia nanoparticles induced by a weak (105−106 A/m) pulsed magnetic field (PMF) are investigated by electrochemical impedance spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetry. It is established that the charge state of the surface layer of nanoparticles and the binding energy of adsorbates on the surface change significantly after PMF treatment. It is shown that the total conductivity of nanoparticles and the activation energy of water-molecule desorption from the surface decrease by a factor of almost 2 at a pulse frequency of 1 Hz. It is concluded that there is a space-charge region near the nanoparticle surface which is involved in the formation of chemical bonds with adsorbed molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Serov, V. I. Margolin, V. A. Zhabrev, N. A. Potsar, I. A. Soltovskaya, V. A. Tupik, and V. S. Fantikov, Inzh. Fiz., No. 1, 18 (2004).

    Google Scholar 

  2. V. I. Alekseenko, Tech. Phys. 43, 1181 (1998).

    Article  Google Scholar 

  3. Ya. B. Zeldovich, A. L. Buchachenko, and E. L. Frankevich, Sov. Phys. Usp. 31, 385 (1988).

    Article  Google Scholar 

  4. A. L. Buchachenko, R. Z. Sagdeev, and K. M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Sib. Otd., Novosibirsk, 1978) [in Russian].

    Google Scholar 

  5. M. I. Molotskii, Phys. Solid State 35, 5 (1993).

    Google Scholar 

  6. M. I. Molotskii, Sov. Phys. Solid State 33, 1760 (1991).

    Google Scholar 

  7. Yu. I. Golovin, Magnet Plasticity of Solid Bodies (Mashinostroenie-1, Moscow, 2003) [in Russian].

    Google Scholar 

  8. I. A. Danilenko, T. E. Konstantinova, G. K. Volkova, et al., Fiz. Tekh. Vys. Davl. 14 (3), 49 (2004).

    Google Scholar 

  9. Yu. I. Golovin, R. B. Morgunov, V. E. Ivanov, and A. A. Dmitrievskii, J. Exp. Theor. Phys. 90, 939 (2000).

    Article  Google Scholar 

  10. Yu. I. Golovin and R. B. Morgunov, J. Exp. Theor. Phys. 88, 332 (1999).

    Article  Google Scholar 

  11. Yu. I. Golovin, R. B. Morgunov, A. A. Baskakov, and S. Z. Shmurak, FPhys. Solid State 41, 1783 (1999).

    Article  Google Scholar 

  12. M. N. Levin and B. A. Zon, J. Exp. Theor. Phys. 84, 760 (1997).

    Article  Google Scholar 

  13. M. N. Levin, V. N. Semenov, and Yu. V. Meteleva, Tech. Phys. Lett. 27, 411 (2002).

    Article  Google Scholar 

  14. T. E. Konstantinova, I. A. Danilenko, V. A. Glazunova, G. K. Volkova, and O. A. Gorban, J. Nanopart. Res. 13, 4015 (2011).

    Article  Google Scholar 

  15. O. S. Doroshkevych, A. V. Shylo, O. V. Saprukina, I. A. Danilenko, T. E. Konstantinova, and L. A. Ahkozov, World J. Condens. Matter Phys., No. 2, 1 (2012).

    Article  Google Scholar 

  16. Yu. Z. Agamalov, D. F. Bobylev, and V. Yu. Kneller, Datch. Sist., No. 5, 14 (2004).

    Google Scholar 

  17. Yu. Agamalov, D. Bobyljev, and V. Kneller, in Proceedings of the 6th IMECO Technical Committee-4 International Symposium on Intelligent Instrumentation for Remote and On-Site Measurements, Brussels, Belgium, May 12–13, 1993 (BEMECO, IBRA-BIRA, Brussels, 1993).

    Google Scholar 

  18. N. A. Drokin, A. V. Fedotova, G. A. Glushchenko, and G. N. Churilov, Phys. Solid State 52, 657 (2010).

    Article  Google Scholar 

  19. www.abc.chemistry.bsu.by/vi/analyser/

  20. http://accessimpedance.iusi.bas.bg

  21. T. E. Konstantinova, A. S. Doroshkevich, I. A. Danilenko, G. K. Volkova, V. A. Glazunova, and T. A. Ryumshina, in Proceedings of the 43rd International Conference on Actual Problems of Strength (Vitebsk, 2004), p. 191.

    Google Scholar 

  22. E. S. Buyanova and Yu. V. Emel’yanova, Impedance Spectroscopy of Electrolytic Materials (Ural. Gos. Univ., Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  23. Z. B. Stoynov, B. M. Grafov, B. Savova-Stoynova, and V. V. Elkin, Electrochemical Impedance (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  24. R. D. Apostolova, O. V. Kolomoets, V. P. Tysyachnyi, and E. M. Shembel’, Vopr. Khim. Khim. Tekhnol., No. 2, 137 (2009).

    Google Scholar 

  25. M. E. Kompan, V. P. Kuznetsov, and V. G. Malyshkin, Tech. Phys. 55, 692 (2010).

    Article  Google Scholar 

  26. S. V. Gnedenkov, S. L. Sinebryukhov, and V. I. Sergienko, Russ. J. Electrochem. 42, 197 (2006).

    Article  Google Scholar 

  27. J. Koutecky, Phys. Rev. 10, 13 (1957).

    Article  Google Scholar 

  28. V. I. Alekseenko and G. K. Volkova, Tech. Phys. 45, 1154 (2000).

    Article  Google Scholar 

  29. F. F. Vol’kenshtein, The Electron Theory of Catalysis on Semiconductors (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  30. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981, Vols. 1, 2.

    Google Scholar 

  31. A. L. Despotuli and A. V. Andreeva, Sovrem. Elektron., No. 7, 24 (2007).

    Google Scholar 

  32. J. Maier, Nature Mater. 4, 805 (2005).

    Article  Google Scholar 

  33. http://en.wikipedia.org/wiki/Nanoionics

  34. A. S. Doroshkevich, A. A. Matuzenko, A. V. Saprykina, et al., in Proceedings of the Conference on Solid State Physics 2011 (Minsk, 2011), Vol. 2, p. 266.

    Google Scholar 

  35. G. I. Epifanov, Physical Principles of Microelectronics (Sov. Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  36. A. L. Despotuli and V. I. Nicolaichic, Solid State Ionics 60, 275 (1993).

    Article  Google Scholar 

  37. J. Hladik, Physics of Electrolytes: Transport Processes in Solid Electrolytes (Academic, New York, 1972; Mir, Moscow, 1978).

    Google Scholar 

  38. E. V. Velichko, Yu. O. Chetverikov, L. A. Aksel’rod, V. N. Zabenkin, V. V. Piyadov, A. A. Sumbatyan, W. H. Kraan, and S. V. Grigor’ev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 401 (2013).

    Article  Google Scholar 

  39. A. A. Vashman and I. S. Pronin, Nuclear Magnetic Relaxation Spectroscopy (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  40. I. E. Tamm, Zh. Eksp. Teor. Fiz. 3, 34 (1933).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Doroshkevych.

Additional information

Original Russian Text © O.S. Doroshkevych, A.V. Shylo, A.K. Kirillov, A.V. Saprykina, I.A. Danilenko, G.A. Troitskiy, T.E. Konstantinova, T.Yu. Zelenyak, 2015, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2015, No. 6, pp. 41–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doroshkevych, O.S., Shylo, A.V., Kirillov, A.K. et al. Magnetically induced electrokinetic phenomena in the surface layers of zirconia nanoparticles. J. Surf. Investig. 9, 564–572 (2015). https://doi.org/10.1134/S1027451015030209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015030209

Keywords

Navigation