Skip to main content

Advertisement

Log in

Orientation of apatite and organic matrix inLingula unguis shell

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The orientation relationship between apatite and organic matrix in shell ofLingula unguis (inarticulate brachiopod) was studied. The organic layers, mineralized layers, and decalcified mineralized layers were examined layer by layer using microbeam X-ray diffraction technique. Both organic layer and decalcified mineralized layer showed the diffraction pattern of β-chitin. The degree of orientation of apatite showed correlation to that of β-chitin: Well oriented diffraction patterns of apatite crystal and organic matrix were observed in the central part. In this part, the fiber axis of β-chitin was parallel to the c-axis of apatite. A close relationship of unit cell dimension between apatite and chitin was indicated. These strongly suggest that the fibrous structure of organic matrix assists the orientation of apatite crystals inLingula unguis shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman F (1914) Notes on shell-structure in the genusLingula, recent and fossil. J R Micro Soc 5:28–31

    Google Scholar 

  2. Klement R (1938) Die anorganische Skeletsubstanz. Ihre Zusammensetzung, natürliche und künstliche Bildung. Naturwissenschaften, 26:145–152

    Article  CAS  Google Scholar 

  3. Kelly PG, Oliver PTP, Pautard FGE (1965) The shell ofLingula unguis. Proc 2nd Eur Symp Calcified Tissue 337–345

  4. Hata M, Moriwaki Y (1984) X-ray study on the hard tissue ofLingula. J Dent Res 63:560

    Google Scholar 

  5. Iijima M, Moriwaki Y, Doi Y, Kuboki Y (1988) The orientation of apatite crystals inLingula unguis shell. Jpn J Oral Biol 30:20–30

    CAS  Google Scholar 

  6. Iwata K (1981) Ultrastructure and calcification of the shells in inarticulate brachiopods. I. Ultrastructure of the shell ofLingula unguis (LINNAEUS). J Geol Soc Jpn 87:405–415

    Google Scholar 

  7. Glimcher MH (1959) Molecular biology of mineralized tissues with particular reference to bone. Revs Mod Phys 31:359–393

    Article  CAS  Google Scholar 

  8. Newman WF, Newman MW (1959) The chemical dynamics of bone mineral. The University of Chicago Press, Chicago

    Google Scholar 

  9. Ambady GK (1959) Studies on collagen. III. Oriented crystallization of inorganic salts on collagen. Proc Ind Acad Sci 49A:136–143

    CAS  Google Scholar 

  10. Erbrn HK, Watabe N (1974) Crystal formation and growth in bivalve nacre. Nature 248:128–130

    Article  Google Scholar 

  11. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–988

    Article  PubMed  CAS  Google Scholar 

  12. Towe KM, Hamilton GH (1968) Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusks. Calcif Tissue Res 1:306–318

    Article  PubMed  CAS  Google Scholar 

  13. Bevelander G, Nakahara H (1969) An electron microscopic study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif Tissue Res 3:84–92

    Article  PubMed  CAS  Google Scholar 

  14. Weiner S, Traub W (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. Fed Eur Biochem Soc 111:311–316

    CAS  Google Scholar 

  15. Weiner S, Talmon Y, Traub W (1983) Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. Int J Biol Macromol 5:325–328

    Article  CAS  Google Scholar 

  16. Weiner S (1984) Organization of organic matrix components in mineralized tissues. Am Zool 24:945–951

    CAS  Google Scholar 

  17. Sakurai T (1966) UNICS 1-01 (Program library of University of Tokyo Computer Center)

  18. Dweltz NE (1961) The structure of β-chitin. Biochim Biophys Acta 51:283–294

    Article  PubMed  CAS  Google Scholar 

  19. Rudall KM (1955) The distribution of collagen and chitin. Symp Soc Exptl Biol 9:49–71

    Google Scholar 

  20. Jeuniaux CJ (1971) Chitinous structures. In: Flokin M, Stortz EH (eds) Comprehensive biochemistry. Elsevier, Amsterdam, 26C:595–632

    Google Scholar 

  21. Trautz OR, Bachra BN (1963) Oriented precipitation of inorganic crystals in fibrous matrices. Arch Oral Biol 8:601–661

    Article  Google Scholar 

  22. Crenshaw MA (1972) The soluble, matrix from Mercenaria mercenaria shell. Biomineral Res Rep 6:6–11

    CAS  Google Scholar 

  23. Weiner S (1979) Aspartic acid-rich proteins: major components of the soluble organic matrix of Mollusk shells. Calcif Tissue Int 29:163–167

    Article  PubMed  CAS  Google Scholar 

  24. Greenfield EM, Wilson DC, Crenshaw MA (1984) Ionotropic nucleation of calcium carbonate by Molluscan matrix. Am Zool 24:925–932

    CAS  Google Scholar 

  25. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci 82:4110–4114

    Article  PubMed  CAS  Google Scholar 

  26. Weiner S (1985) Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. J Exp Zool 234:7–15

    Article  PubMed  CAS  Google Scholar 

  27. Rudall KM (1963) The chitin/protein complexes of insect cuticles. Adv Insect Physiol 1:257–313

    Article  CAS  Google Scholar 

  28. Jope M (1967) The protein of brachiopod shell. I: amino acid composition and implied protein taxonomy. Comp Biochem Physiol 20:593–600

    Article  CAS  Google Scholar 

  29. Tanaka K, Ono T, Katsura N (1988) A hydroxyapatite-adsorbable protein complex in the shell of Lingula unguis. Jpn J Oral Biol 30:219–226

    CAS  Google Scholar 

  30. Hosemann R (1951) Die parakristalline Feinstruktur natürlicher und synthetischer Eiweisse. Visuelles Näherungs-verfahren zur Bestimmung der Schwankungstensoren von Gitterzellen. Acta Cryst 4:520–530

    Article  Google Scholar 

  31. Hosemann R (1975) Microparacrystallites and paracrystalline superstructures. Die Macromol Chem (Suppl) 1:559–577

    Article  Google Scholar 

  32. Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6:58–59

    Article  Google Scholar 

  33. Iijima M, Moriwaki Y (1989) Small angle X-ray scattering study of Lingula unguis shell. Jpn J Oral Biol 31:308–316

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iijima, M., Moriwaki, Y. Orientation of apatite and organic matrix inLingula unguis shell. Calcif Tissue Int 47, 237–242 (1990). https://doi.org/10.1007/BF02555925

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555925

Key words

Navigation