Skip to main content

Advertisement

Log in

Compensatory parathyroid hypertrophy after hemiparathyroidectomy in rats feeding a low calcium diet

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The functional and anatomic compensatory response of the parathyroid gland was examined in hemiparathyroidectomized (HPTx) rats whose parathyroid hormone (PTH) secretion was stimulated by a low calcium diet. These responses were compared with those observed in the thyroid gland of hemithyroidectomized (HTx) rats. Rats kept on a low calcium diet for 10 days were subjected to HPTx, HTx, or sham operations. Throughout the experiment (up to 28 days after surgery), serum calcium levels of HPTx rats were lower than the basal, with Δ values (mg/dl, mean±SEM) of −0.66±0.17 and −0.84±0.17, (P<0.05) 3 and 28 days after surgery, respectively. Serum PTH decreased significantly from 7 to 21 days after HPTx, reaching normality at day 28 after surgery. In HTx rats, serum thyroxine (T4) levels diminished significantly 7 days after surgery, and attained normality thereafter. The mitotic index (number of metaphases/1,000 cells) in parathyroid glands of colchicine-treated HPTx rats increased significantly in comparison to sham-operated controls, when examined 2 or 40 days after surgery. The mitotic index of thyroid follicular cells was significantly higher than that of their respective controls, 2 but not 40 days after HTx. These results indicate that after HPTx, a delayed compensatory response is found when the animals are kept under a low calcium diet. Parathyroid response is both delayed and of a minor degree compared to that found in the thyroid gland after HTx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark OH, Lambert WR, Cavalieri RR, Rapoport B, Hammond E, Ingbar H (1976) Compensatory thyroid hypertrophy after hemithyroidectomy in rats. Endocrinology 99:988–995

    PubMed  CAS  Google Scholar 

  2. Romeo HE, Boado RJ, Cardinali DP (1985) Role of the sympathetic nervous system in the control of thyroid compensatory growth of normal and hypophysectomized rats. Neuroendocrinology 40:309–315

    PubMed  CAS  Google Scholar 

  3. Engeland WC, Dallman MF (1976) Neural mediation of compensatory adrenal growth. Endocrinology 99:1659–1662

    PubMed  CAS  Google Scholar 

  4. Engeland WC, Shinsaki J, Dallman MF (1975) Corticosteroids and ACTH are not required for compensatory adrenal growth. Am J Physiol 229:1461–1462

    PubMed  CAS  Google Scholar 

  5. Gerendai I (1979) Less severe ovarian atrophy in hypophysectomized hemiovariectomized rats than in hypophysectomized animals with two ovaries. Neuroendocrinology 29: 346–349

    PubMed  CAS  Google Scholar 

  6. Purnell DC, Scholz DA, Beahrs OH (1977) Hyperparathyroidism due to single gland enlargement: prospective postoperative study. Arch Surg 112:365–368

    Google Scholar 

  7. Brasier AR, Wang Ch, Nussbaum R (1988) Recovery of parathyroid hormone secretion after parathyroid adenomectomy. J Clin Endocrinol Metab 66:495–499

    PubMed  CAS  Google Scholar 

  8. Pavlov AV (1983) Compensatory hypertrophy of the rat parathyroid glands. Arch Anat Cytol Embryol 85:75–81

    CAS  Google Scholar 

  9. Ladizesky MG, Romeo HE, Since J, Mautalen CA, Slatopolsky E, Cardinali DP (1987) Effect of superior cervical ganglionectomy on serum calcium and PTH levels in hemiparathyroidectomized rats. Neuroendocrinol Lett 9:99–103

    CAS  Google Scholar 

  10. Ladizesky MG (1988) Participación de la inervación simpática en la regulación de la secreción de parathormona y calcitonina. Doctoral Thesis. Faculty of Natural and Exact Sciences. University of Buenos Aires, Argentina

    Google Scholar 

  11. Trudeau DL, Freier EF (1967) Determination of calcium in urine and serum by atomic absorption spectrophotometry (AAS). Clin Chem 13:101–114

    PubMed  CAS  Google Scholar 

  12. Casco C, Bagur A, Mautalen C (1988) A polivalent antiserum for serum parathormone assay in diagnosis and disease grading of primary hyperparathyroidism. Rev Argent Endocrinol Metab 25:3–8

    Google Scholar 

  13. Cardinali DP, Ladizesky MG (1985) Changes in parathyroid hormone and calcium levels after superior cervical ganglionectomy of rats. Neuroendocrinology 40:291–296

    PubMed  CAS  Google Scholar 

  14. Ulloa ER, Zaninovich AA (1986) Effects of histamine H1- and H2-receptor antagonists on thyrotrophin secretion in the rat. J Endocrinol 111:175–180

    PubMed  CAS  Google Scholar 

  15. Grubenmann W, Biswanger U, Huzinker W, Fisher JA (1978) Effects of calcium intake and renal function on plasma immunoreactive parathyroid hormone levels in rats. Horm Metab Res 10:438–443

    Article  PubMed  CAS  Google Scholar 

  16. Trechsel U, Eisman JA, Fisher JA, Bonjour JP, Fleisch H (1980) Calcium-dependent, parathyroid hormone-independent regulation of 1,25-dihydroxyvitamin D. Am J Physiol 239 (Endocrinol Metab 2):E119-E124

    PubMed  CAS  Google Scholar 

  17. Rader JI, Baylink DJ, Hughes MR, Safilian EF, Haussler MR (1979) Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihyroxyvitamin D3. Am J Physiol 236:(Endocrinol Metab. Gastrointest. Physiol. 5(2)):E118-E122

    PubMed  CAS  Google Scholar 

  18. Armbrecht HJ, Forte LR, Halloran BP (1984) Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D and PTH. Am J Physiol 246 (Endocrinol Metab 9):E266-E270

    PubMed  CAS  Google Scholar 

  19. Adams ND, Gray RW, Lemann JJ (1979) The effect of oral CaCo3 loading and dietary calcium deprivation on plasma 1,25-dihydroxyvitamin D concentrations in healthy adults. J Clin Endocrinol Metab 48:1008–1016

    PubMed  CAS  Google Scholar 

  20. Prince R, Dick I, Boyd F, Kent N, Garcia-Webb P (1988) The effects of dietary calcium deprivation on serum calcitriol levels in premenopausal and postmenopausal women. Metabolism 37:727–731

    Article  PubMed  CAS  Google Scholar 

  21. Kalu DN, Liu ChCh, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto M, Igarashi T, Muramatsu M, Fukagawa M, Motokura T, Ogata E (1989) Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone messenger RNA in the rat. J Clin Invest 83:1053–1056

    Article  PubMed  CAS  Google Scholar 

  23. Parfitt AM (1979) Surgical, idiopathic and other varieties of parathyroid hormone-deficient hypoparathyroidism. In: De Groot LJ, Cahill GF, Odell WD, Martini L, Potts JT Jr, Nelson DH, Steinberger E, Winegrad AI (eds). Endocrinology (vol. 2). Grune and Stratton, New York, p 755

    Google Scholar 

  24. Parfitt AM, Willgoss D, Parikh N, Wilson P, Lloyd HM (1989) Long-term response of rats to dietary calcium restriction: evidence for calcium-dependent, parathyroid hormone-independent modulation of vitamin D metabolism (abstract). J Bone Miner Res 4:S252

    Google Scholar 

  25. Cloutier M, D'Amour P, Gascon-Barre M, Hamel L (1989) Influence of dietary calcium and vitamins on the in vivo parathyroid function of the dog (abstract). J Bone Miner Res 4:S360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladizesky, M., Diáz, M.C., Zeni, S. et al. Compensatory parathyroid hypertrophy after hemiparathyroidectomy in rats feeding a low calcium diet. Calcif Tissue Int 48, 63–67 (1991). https://doi.org/10.1007/BF02555797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555797

Key words

Navigation