Skip to main content

Advertisement

Log in

Saturation of human salivary secretions with respect to calcite and inhibition of calcium carbonate precipitation by salivary constituents

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The state of saturation of human salivary secretions with respect to calcite has been investigated. This property cannot be calculated exactly because of uncertainties in the values of the solubility product constant of calcite, the dissociation constants of carbonic acid, and PCO2 values of saliva. Minimum and maximum limits for this saturation, however, can be established using appropriate values for the constants and salivary PCO2. Values that give the minimum degree of saturation show that 8 of the 70 samples of human saliva investigated would be supersaturated with respect to calcite, while 64 of the 70 samples appeared to be supersaturated when values giving the maximum degree of saturation were used. In the latter case, the ratio of ionic activity products to solubility product was above 10 for several samples and over 18 for the most supersaturated sample. Since these results show that supersaturation of saliva with respect to calcite may be a common condition, human salivary secretions were investigated for the presence of inhibitors of calcite precipitation. Inorganic phosphate and the acidic proline-rich proteins, known to be inhibitors of calcite precipitation, and human salivary statherin, now shown to have a similar activity, are present in saliva at concentrations considerably higher than those required to inhibit calcite precipitation under salivary conditions. Quantitatively, phosphate is by far the most important inhibitor of calcite precipitation present in saliva, suggesting that inhibition of calcite precipitation by the macromolecules may be of secondary significance. It seems more likely that the function of these molecules is to inhibit precipitation of calcium phosphate salts, as previously proposed. These different inhibitory activities, however, are likely to be factors in the differences in composition of oral and dental calculi in different species, and may need to be considered in the formation of calcite stones in the pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gron P (1973) Saturation of human saliva with calcium phosphates. Archs Oral Biol 18:1385–1392

    Article  CAS  Google Scholar 

  2. Hay DI, Schluckebier SK, Moreno EC (1982) Equilibrium dialysis and ultrafiltration studies of calcium and phosphate binding by human salivary proteins. Implications for salivary supersaturation with respect to calcium phosphate salts. Calcif Tissue Int 34:531–538

    Article  PubMed  CAS  Google Scholar 

  3. Lagerlof F (1983) Effect of flow rate and pH on calcium phosphate saturation in human parotid saliva. Caries Res 17:403–411

    PubMed  CAS  Google Scholar 

  4. Schlesinger DH, Hay DI (1977) Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biol Chem 252:1689–1695

    PubMed  CAS  Google Scholar 

  5. Gron P, Hay DI (1976) Inhibition of calcium phosphate precipitation by human salivary secretions. Archs Oral Biol 21:201–205

    Article  CAS  Google Scholar 

  6. Hay DI, Schlesinger DH, Moreno EC (1979) Phosphoprotein inhibitors of calcium phosphate precipitation from human salivary secretions. Inorg Persp Biol Med 2:271–285

    CAS  Google Scholar 

  7. LeGeros RZ, Shannon IL (1979) The crystalline components of dental calculi. Human vs. dog. J Dent Res 12:2371–2377

    Google Scholar 

  8. Weaver ME (1964) X-Ray diffraction study of calculus of the miniature pig. Archs Oral Biol 9:75–81

    Article  CAS  Google Scholar 

  9. Ghigi E (1938) Contributo allo studio della composizione dei calcoli salivari di cavallo. Arch Ital Sci Farmacol 7:60–71

    Google Scholar 

  10. Sarles H (1984) Epidemiology and physiopathology of chronic pancreatitis and the role of the pancreatic stone protein. Clin Gastroenterol 13:895–912

    PubMed  CAS  Google Scholar 

  11. Saitoh E, Isemura S, Sanada K (1985) Inhibition of calcium carbonate precipitation by human salivary proline-rich phosphoproteins. Archs Oral Biol 30:641–643

    Article  CAS  Google Scholar 

  12. Reitemeier RF, Buehrer TF (1940) The inhibiting action of minute amounts of sodium hexametaphosphate on the precipitation of calcium carbonate from ammoniacal solutions. I. Quantitative studies of the inhibition process. J Phys Chem 44:535–551

    Article  CAS  Google Scholar 

  13. Reddy MM (1977) Crystallization of calcium carbonate in the presence of trace amounts of phosphorus-containing anions. J Crystal Growth 41:287–295

    Article  CAS  Google Scholar 

  14. Reddy MM, Wang KK (1980) Crystallization of calcium carbonate in the presence of metal ions. I. Inhibition by magnesium ion at pH 8.8 and 25°. J Crystal Growth 50:470–480

    Article  CAS  Google Scholar 

  15. Shannon IL, Prigmore JR, Chauncey HH (1962) Modified Carlson-Crittenden device for the collection of parotid fluid. J Dent Res 41:778–783

    PubMed  CAS  Google Scholar 

  16. Kerr AC (1958) The physiological regulation of salivary secretions in man. PhD thesis, University of London.

  17. Shannon IL, Suddick RP, Dowd FJ (1974) Saliva: composition and secretion. In: Myers HM (ed) Monographs in oral Science, Karger, Basel, p 15

    Google Scholar 

  18. Sillen LG, Martell AE (1964) Stability constants of metal-ion complexes. The Chemical Society, London

    Google Scholar 

  19. Zipkin I, Fath EH, Stephen RM (1953) The concentration of citrate in whole and parotid saliva. J Dent Res 32:709

    Google Scholar 

  20. Ericsson Y, Hellstrom I (1953) Lactic acid content of the saliva after carbohydrate ingestion. Source of the salivary lactic acid and inhibition of its formation. Acta Odont Scand 10:118–133

    CAS  Google Scholar 

  21. Lagerlof F, Lindquist L (1983) Distribution of bound and ionic calcium in human parotid saliva. Caries Res 17:403–411

    Article  PubMed  CAS  Google Scholar 

  22. Gregory TM, Moreno EC, Brown WE (1970) Solubility of CaHPO4·2H2O in the system Ca(OH)2−H3PO4−H2O at 5, 15, 25 and 37.5°C. J Res Nat Bur Stand (US) 74A:461–475

    Google Scholar 

  23. Moreno EC, Gregory TM, Brown WE (1968) Preparation and solubility of hydroxyapatite. J Res Nat Bur Stand 72A:773–782

    Google Scholar 

  24. Tietz NW (1970) Fundamentals of clinical chemistry. WB Saunders, Philadelphia, p 950

    Google Scholar 

  25. Dawes C (1969) The effects of flow rate and duration of stimulation on the concentrations of protein and the main electrolytes in human parotid saliva. Archs Oral Biol 14:277–294

    Article  CAS  Google Scholar 

  26. Kelly KK, Anderson CT (1935) Contribution to the data on theoretical metallurgy. IV. Metal carbonates—correlations and applications of thermodynamic properties. Bureau of Mines, Bulletin 384:1–73

    Google Scholar 

  27. McInnes DA, Belcher D (1933) The thermodynamic ionization constants of carbonic acid. J Am Chem Soc 55:2630–2646

    Article  Google Scholar 

  28. Harned HS, Scholes Jr SR (1941) The ionization constant of HCO 3 from 0 to 50°. J Am Chem Soc 63:1706–1709

    Article  CAS  Google Scholar 

  29. Ellis AJ (1959) The system Na2CO3−NaHCO3−CO2−H2O at temperatures up to 200°. Am J Sci 257:287–296

    Article  CAS  Google Scholar 

  30. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190

    CAS  Google Scholar 

  31. Helgeson AC (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. J Phys Chem 71:3121–3136

    Article  CAS  Google Scholar 

  32. Bianucci C, Ghiringhelli L (1960) Determinazione della solubilita del carbonato di calcio in soluzioni acquose a 25°C e calcolo del prodotto di solubilita secondo la teoria di Debye-Huckel. Ann Chim (Italy) 50:99–107

    CAS  Google Scholar 

  33. McCoy HN, Smith HJ (1911) Equilibrium between alkaliearth carbonates, carbon dioxide and water. J Am Chem Soc 33:468–473

    Article  CAS  Google Scholar 

  34. Seyler CA, Lloyd PV (1917) Studies of the carbonates. Part III. Lithium, calcium and magnesium carbonates. J Chem Soc 111:994–1001

    CAS  Google Scholar 

  35. Frear GL, Johnston J (1929) The solubility of calcium carbonate (calcite) in certain aqueous solutions at 25°. J Am Chem Soc 51:2082–2093

    Article  CAS  Google Scholar 

  36. Garrels RM, Thomson ME, Siever R (1960) Stability of some carbonates at 25°C and one atmosphere total pressure. Am J Sci 258:402–418

    Article  CAS  Google Scholar 

  37. Shannon IL, Chauncey HH (1967) A parotid fluid collection device with improved stability characteristics. J Oral Ther Pharm 4:93–97

    CAS  Google Scholar 

  38. Oppenheim FG (1970) Preliminary observations on the presence and origin of serum albumin in human saliva. Helv Odont Acta 14:10–17

    CAS  Google Scholar 

  39. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  40. Oppenheim FG, Hay DI, Franzblau C (1971) Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization. Biochemistry 10:4233–4238

    Article  PubMed  CAS  Google Scholar 

  41. Hay DI (1973) The isolation from human parotid saliva of a tyrosine-rich acidic peptide which exhibits high affinity for hydroxyapatite surfaces. Archs Oral Biol 18:1531–1541

    Article  CAS  Google Scholar 

  42. Schlesinger DH, Hay DI (1981) Primary structure of the active tryptic fragments of human and monkey salivary anionic proline-rich proteins. Int J Peptide Protein Res 17:34–41

    Article  CAS  Google Scholar 

  43. Aoba T, Moreno EC, Hay DI (1984) Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins. Calcif Tissue Int 36:651–658

    Article  PubMed  CAS  Google Scholar 

  44. Wheeler AP, George JW, Evans CA (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212:1397–1398

    Article  CAS  PubMed  Google Scholar 

  45. Multigner L, De Caro A, Lombardo D, Campese D, Sarles H (1983) Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice. Biochem Biophys Res Comm 110:67–74

    Article  Google Scholar 

  46. Lowry OH, Lopez JA (1946) The determination of inorganic phosphate in the presence of labile phosphate esters. J Biol Chem 162:421–428

    CAS  Google Scholar 

  47. Gindler EM, King JD (1972) Rapid colorimetric determination of calcium in biological fluids with methylthymol blue. Am J Clin Pathol 58:376–382

    PubMed  CAS  Google Scholar 

  48. Reddy MM, Nancollas GH (1976) The crystallization of calcium carbonate. IV. The effect of magnesium, strontium and sulfate ions. J Crystal Growth 35:33–38

    Article  CAS  Google Scholar 

  49. Moreno EC, Varughese K, Hay DI (1979) Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif Tissue Int 28:7–16

    Article  PubMed  CAS  Google Scholar 

  50. Kousvelari EE, Baratz RS, Burke B, Oppenheim FG (1980) Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle and glandular tissue specimens. J Dent Res 59:1430–1438

    PubMed  CAS  Google Scholar 

  51. Hay DI, Smith DJ, Schluckebier SK, Moreno EC (1984) Relationship between concentrations of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. J Dent Res 63:857–863

    PubMed  CAS  Google Scholar 

  52. Moreno EC, Kresak M, Hay DI (1982) Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem 257:2981–2989

    PubMed  CAS  Google Scholar 

  53. Termine JD, Eanes ED, Conn KM (1980) Phosphoprotein modulation of apatite crystallization. Calcif Tissue Int 31:247–251

    Article  PubMed  CAS  Google Scholar 

  54. Hay DI, Gron P (1976) Inhibitors of calcium phosphate precipitation in human whole saliva. In: Stiles HM, Loesche WJ, O'Brien TC (eds) Microbial aspects of dental caries. Sp supp microbiology abstracts. Information Retrieval, Washington DC, 1:143–150

    Google Scholar 

  55. Schroeder HE, Lenz H, Muhlemann HR (1964) Microstructure and mineralization of early dental calculus. Helv Odont Acta 8:1–16

    CAS  Google Scholar 

  56. Schroeder HE, Bambauer HU (1966) Stages of calcium phosphate crystallization during calculus formation. Archs Oral Biol 11:1–14

    Article  CAS  Google Scholar 

  57. Kaufman HW, Kleinberg I (1973) X-ray diffraction examination of calcium phosphate in dental plaque. Calcif Tissue Res 11:97–104

    Article  PubMed  CAS  Google Scholar 

  58. Kani T, Kani M, Moriwaki Y, Doi Y (1983) Microbeam X-ray diffraction of dental calculus. J Dent Res 62:92–95

    PubMed  CAS  Google Scholar 

  59. Edmondson HA, Bullock WK, Mehl JW (1950) Chronic pancreatitis and lithiasis. II. Pathology and pathogenesis of pancreatic lithiasis. Am J Pathol 26:37–55

    PubMed  CAS  Google Scholar 

  60. Parsons J, Eurs FJ (1959) X-ray diffraction analysis of crystals in pathology. Am J Clin Pathol 32:405–421

    PubMed  CAS  Google Scholar 

  61. Figarella C, Clemente F, Guy O (1969) On zymogens of human pancreatic juice. FEBS Lett 3:351–353

    Article  PubMed  CAS  Google Scholar 

  62. De Caro A, Lohse J, Sarles H (1979) Characterization of a protein isolated from pancreatic calculi of men suffering from chronic calcifying pancreatitis. Biochem Biophys Res Comm 87:1176–1182

    Article  PubMed  Google Scholar 

  63. De Caro A, Multigner L, Lafont H, Lombardo D, Sarles H (1984) The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem J 222:669–677

    PubMed  Google Scholar 

  64. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad Sci USA 82:4110–4114

    Article  PubMed  CAS  Google Scholar 

  65. Lentner C (1985) Geigy scientific tables. Ciba-Geigy, 1:134–137

    Google Scholar 

  66. Boustiere CH, Sarles H, Sahel J (1983) Influence of alcoholims and chronic pancreatitis on the secretion of citrate and calcium in pure pancreatic juice. Gastroenterology 84:1113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, D.I., Schluckebier, S.K. & Moreno, E.C. Saturation of human salivary secretions with respect to calcite and inhibition of calcium carbonate precipitation by salivary constituents. Calcif Tissue Int 39, 151–160 (1986). https://doi.org/10.1007/BF02555111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555111

Key words

Navigation