Skip to main content

Advertisement

Log in

Pathogenesis of osteoporosis

  • Introductory Lectures
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The final clinical outcome of the osteoporotic process is a fracture, which can occur as a result of minimal trauma or even spontaneously. At present low bone mass is regarded as the main contributor to bone fragility, but possible qualitative changes in the bone matrix must also be considered. Two factors which determine the level of bone mass at any age are the obtained peak bone mass and duration and rate of bone loss. Peak bone mass is achieved during the first three decades of life. Genetic and nutritional factors as well as mechanical stress on the skeleton obviously play crucial roles in determining peak bone mass. Two phases of bone loss—age-related and menopause-related—dictate the final bone mass at old age. Postmenopausal osteoporosis is a particular example of unbalanced bone resorption leading to net bone loss. An increasing number of systemic and local factors have been found to participate in the regulation of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    Article  PubMed  CAS  Google Scholar 

  2. Riggs BL, Melton LJ III (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901

    Article  PubMed  CAS  Google Scholar 

  3. Riggs BL, Melton LJ III (1990) Clinical heterogeneity of involutional osteoporosis: implications for preventive therapy. J Clin Endocrinol Metab 70:1229–1232

    PubMed  CAS  Google Scholar 

  4. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD (1990) Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333

    PubMed  CAS  Google Scholar 

  5. Evans RA, Marel GM, Lancester EK, Kos S, Evans M, Stanley YP (1988) Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 109:870–873

    PubMed  CAS  Google Scholar 

  6. Nordin BEC, Need AGA, Chatterton BE (1990) The relative contributions of age and years since menopause to postmenopausal bone loss. J Clin Endocrinol 70:83–88

    CAS  Google Scholar 

  7. Eriksen E, Steiniche T, Mosekilde L, Melsen F (1989) Histomorphometric analysis of bone in metabolic bone disease. Endocrinol Metab Clin North Am 18:919–954

    PubMed  CAS  Google Scholar 

  8. Reeve J (1986) A stochastic analysis of iliac trabecular bone dynamics. Clin Orthop 213:264–278

    PubMed  Google Scholar 

  9. Aaron JE, Makins NB (1987) The microanatomy of trabecular bone loss in normal ageing men and women. Clin Orthop 215:260–271

    PubMed  Google Scholar 

  10. Frost HM (1964) Dynamics of bone remodeling. In: HM Frost (ed) Bone Biodynamics. Little, Brown, Boston, p. 315

    Google Scholar 

  11. Martin TJ, Ng SK, Suda T (1989) Bone cell physiology. Endocrinol Metab Clin North Am 18:833–858

    PubMed  CAS  Google Scholar 

  12. Mundy GR, Roodman GD (1987) Osteoclast ontogeny and function. In: Peck WA (ed) Bone and mineral research V. Elsevier, Amsterdam, pp 209–280

    Google Scholar 

  13. Lakkakorpi P, Tuukkanen J, Hentunen T, Järvelin K, Väänänen K (1989) Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 4:817–825

    PubMed  CAS  Google Scholar 

  14. Horton MA, Davies J (1989) Adhesion receptors in bone. J Bone Miner Res 4:803–808

    PubMed  CAS  Google Scholar 

  15. Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclast. Clin Orthop 231:239–271

    PubMed  CAS  Google Scholar 

  16. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar protyon pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  17. Bekker PJ, Gay CV (1990) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579

    Article  PubMed  CAS  Google Scholar 

  18. Väänänen HK, Karhukorpi E-K, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled borders of osteoclasts. J. Cell Biol 111:1305–1311

    Article  PubMed  Google Scholar 

  19. Sundquist K, Lakkakorpi P, Wallmark B, Väänänen K, (1990) Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun 168:309–313

    Article  PubMed  CAS  Google Scholar 

  20. Eeckhout Y, Delaisse JM (1988) The role of collagenase in bone resorption. An overview. Pathol Biol (Parr's) 36:1139–1146

    CAS  Google Scholar 

  21. Bonewald LF, Mundy GR (1989) Role of transforming growth factor beta in bone remodeling: a review. Connect Tissue Res 23:201–208

    PubMed  CAS  Google Scholar 

  22. Marcus R (1989) Estrogens and progestins in the management of primary hyperparathyroidism. Endocrinol Metab Clin North Am 18:715–722

    PubMed  CAS  Google Scholar 

  23. Calvo MS, Kumar R, Heat H III (1990) Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab 70:1334–1340

    Article  PubMed  CAS  Google Scholar 

  24. Tiegs RD, Body JJ, Wahner HW, Barta J, Riggs BL, Heath H III (1985) Calcitonin secretion in postmenopausal osteoporosis. N Engl J Med 312:1097–1100

    Article  PubMed  CAS  Google Scholar 

  25. Hurley DL, Tiegs RD, Wahner HW, Heath H III (1987) Axial and appendicular bone mineral density in patients with long-term deficiency or excess of calcitonin. N Engl J Med 317:537–541

    Article  PubMed  CAS  Google Scholar 

  26. Gallagher JC, Jerpbak CM, Jee WSS, Johnson KA, DeLuca HF, Riggs BL (1982) 1,25-Dihydroxyvitamin D3: short- and long-term effects on bone and calciuim metabolism in patients with postmenopausal osteoporosis. Proc Natl Acad Sci USA 79:3325–3329

    Article  PubMed  CAS  Google Scholar 

  27. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86

    Article  PubMed  CAS  Google Scholar 

  28. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs FB, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA 86:854–857

    Article  PubMed  CAS  Google Scholar 

  29. Mundy G (1989) Calcium homeostasis: hypercalcemia and hypocalcemia. Martin Dunitz, London

    Google Scholar 

  30. Canalis E, McCarthy TL, Centrella M (1989) The role of growth factors in skeletal remodeling. Endocrinol Metab Clin North Am 18:903–918

    PubMed  CAS  Google Scholar 

  31. Raisz LG (1988) Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318:818–828

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Väänänen, H.K. Pathogenesis of osteoporosis. Calcif Tissue Int 49 (Suppl 1), S11–S14 (1991). https://doi.org/10.1007/BF02555080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555080

Key words

Navigation