Skip to main content
Log in

A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

  • Part III. Invited Papers Dedicated to Lawrence Biedenharn
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay (Ovββ-decay) of76 Ge,100 Mo,116 Cd,128 Te, and136 Xe within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behavior already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Haxton and G. S. Stephenson,Prog. Part. Nucl. Phys.,12 (1984).

  2. M. G. Schepkin,Sov. Phys. Usp. 27, 555 (1984).

    Article  Google Scholar 

  3. M. Doi, T. Kotani, and E. Takasugi,Prog. Theor. Phys. (Supp.),83, 1 (1985).

    Google Scholar 

  4. J. D. Vergados,Phys. Rep. 133, 1 (1986).

    Article  ADS  Google Scholar 

  5. T. Tomoda,Rep. Prog. Phys. 54, 53 (1991).

    Article  ADS  Google Scholar 

  6. A. Faessler, S. Kovalenko, F. Ŝimkovic, and J. Schwieger,Phys. Rev. Lett. 78, 183 (1997).

    Article  ADS  Google Scholar 

  7. T. Tomoda and A. Faessler,Phys. Lett. B 199, 475 (1987).

    Article  ADS  Google Scholar 

  8. J. Engel, P. Vogel, and M. R. Zirnbauer,Phys. Rev. C 37, 731 (1988).

    Article  ADS  Google Scholar 

  9. K. Muto, E. Bender, and H. V. Klapdor,Z. Phys. A 334, 187 (1989).

    Google Scholar 

  10. G. Pantis, A. Faessler, W. A. Kaminski, and J. D. Vergados,J. Phys. G 18, 605 (1992).

    Article  ADS  Google Scholar 

  11. F. Krmpotić and S. Sharma,Nucl. Phys. A 572, 329 (1994).

    Article  ADS  Google Scholar 

  12. P. Vogel and M. R. Zirnbauer,Phys. Rev. Lett. 57, 3148 (1986).

    Article  ADS  Google Scholar 

  13. O. Civitarese, A. Faessler, T. Tomoda,Phys. Lett. B 194, 11 (1987).

    Article  ADS  Google Scholar 

  14. K. Muto, and H. V. Klapdor,Phys. Lett. B 201, 420 (1988).

    Article  ADS  Google Scholar 

  15. J. Toivanen and J. Suhonen,Phys. Rev. Lett. 75, 410 (1995).

    Article  ADS  Google Scholar 

  16. J. Schwieger, F. Ŝimkovic, and Amand Faessler,Nucl. Phys. A 600, 179 (1996).

    Article  ADS  Google Scholar 

  17. F. Krmpotić, A. Mariano, E. J. V. de Passos, A. F. R. de Toledo Piza, and T. T. S. Kuo,Fizika B 5, 93 (1996).

    ADS  Google Scholar 

  18. J. G. Hirsch, P. O. Hess, and O. Civitarese,Phys. Rev. C 54, 1976 (1996).

    Article  ADS  Google Scholar 

  19. J. G. Hirsch, P. O. Hess and O. Civitarese, nucl-th 9611008.

  20. J. Engel, S. Pittel, M. Stoistov, P. Vogel, and J. Dukelsky, nucl-th/9610045.

  21. F. Ŝimkovic, J. Schwieger, M. Veselsky, G. Pantis, and Amand Faessler,Phys. Lett. B. 393, 267 (1997).

    Article  ADS  Google Scholar 

  22. M. K. Cheoun, A. Bobyk, A. Faessler, F. Ŝimkovic, and G. Teneva,Nucl Phys. A 561, 74 (1993); M. K. Cheoun, A. Bobyk, A. Faessler, F. Ŝimkovic, and G. Teneva,Nucl. Phys. A 564, 329 (1993); M. K. Cheoun, A. Faessler, F. Ŝimkovic, G. Teneva, and A. Bobyk,Nucl. Phys. A 587, 301 (1995).

    Article  ADS  Google Scholar 

  23. G. Pantis, F. Ŝimkovic, J. D. Vergados, and Amand Faessler,Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  24. K. Holinde,Phys. Rep. 68, 121 (1981).

    Article  ADS  Google Scholar 

  25. P. Moeller and J. R. Nix,Nucl. Phys. A 536, 20 (1992).

    Article  ADS  Google Scholar 

  26. R. G. Madland and J. R. Nix,Nucl. Phys. A 476, 1 (1988).

    Article  ADS  Google Scholar 

  27. J. Engel, K. Langanke, and P. Vogel,Phys. Lett. B 389, 211 (1996).

    Article  ADS  Google Scholar 

  28. M. Güntheret al. (Heidelberg-Moscow collaboration),Phys. Rev. D 55, 54 (1997).

    Article  Google Scholar 

  29. M. Alston-Garnjostet al., Phys. Rev. Lett. 71, 831 (1993).

    Article  ADS  Google Scholar 

  30. F. A. Danevichet al., Phys. Lett. B 344, 72 (1995).

    Article  ADS  Google Scholar 

  31. T. Bernatowiczet al., Phys. Rev. Lett. 69, 2341 (1992).

    Article  ADS  Google Scholar 

  32. J. C. Vuillemieret al., Phys. Rev. D, 1009 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ŝimkovic, F., Schwieger, J., Pantis, G. et al. A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay. Found Phys 27, 1275–1289 (1997). https://doi.org/10.1007/BF02551528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551528

Keywords

Navigation