Skip to main content
Log in

Materials engineering for optoelectronic crystals related to III–V compounds

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

An introductory glimpse of modern approaches to the application of productive and reasonable techniques for the defined electronic materials will be presented. The paper is divided into four parts. Each is supplemented with illustrations. The first part explains the meaning of materials engineering for electronics (MEE) and for optoelectronic crystals in particular. Its interdisciplinarity is shown and also the range of problems it can solve. Graduate courses of someMEE disciplines are also given.

The second part of the paper related to the feasible solution withMEE as to the optimal realization of the application requirements. The physical modelling, databases and characterization techniques are given. The third part deals with particular materials: III–V semiconductors. A brief survey of the best methods of crystal growth is given, stressing those which imply a possibility of creating crystals defined up to the atomic range.

The last part is devoted to our team's orginal crystal growth methods:CAM-S (A Crystallization Method Providing Composition Autocontrol in Situ) andCOM-S (Calculation Method of Optimal Molten-Solution Composition). The combination of these methods, further modified with vibrational and magneto-hydrodinamical stirring (VS, MHD-S), allows us to grow crystalline ingots of ternary solid solutions (TSS) possessing extreme homogeneity. Illustrations on In−Ga−Sb system are supplied. We conclude with a discussion of the impact of such methods and approaches on a device quality and to other fields.

Zusammenfassung

Es wird ein kurzer Einblick in moderne Methoden zur Anwendung produktiver und akzeptabler Techniken für bestimmte elektronische Materialien gegeben. Der Artikel gliedert sich in vier Teile, wovon jeder mit Illustrationen ausgestattet ist. Der erste Teil erklärt die Bedeutung von Materialtechnik für Elektronik (MEE) und im speziellen für optoelektronische Kristalle. Es wird deren Interdisziplinarität gezeigt und auch der Fragenbereich, in dem sie angewendet werden kann. Es werden auch Hochschulkurse einigerMEE Disziplinen angeführt.

Der zweite Teil bezieht sich auf eine mögliche Lösung mittelsMEE bezüglich der optimalen Realisierung der Anwendungsanforderungen. Physikalische Modellier-, Datenbanken- und Charakterisierungstechniken werden gegeben. Der dritte Teil beschäftigt sich mit speziellen Materialien: III–V Halbleiter. Es wird ein kurzer Überblick der besten Methoden für das Züchten von Kristallen gegeben, wobei jene besonders betont werden, die die Möglichkeit zur Schaffung von Kristallen bis zum atomaren Bereich beinhalten.

Der letzte Teil widmet sich den ursprünglichen Kristalzüchtungsmethoden unseres Forschung-steams:CAM-S undCOM-S. Unter weiterer Modifizierung mittelsVS undMHD-S erlaubt uns die Kombination dieser Methoden die Züchtung von Kristallrohblöcken von ternären festen Lösungen (TSS) mit einer extrem hohen Homogenität. Dafür werden Beispiele am System In−Ga−Sb gezeigt. Zum Schluß erfolgt eine Diskussion der Auswirkung solcher Methoden auf die Gerätegüte und andere Bereiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Venkrbec, Materials Engineering for Electronics, The 11th International Congress of Chemical Engineering, Chem. Equipment, Design and Automation—‘CHISA ‘93’ (Prague, Aug. 29–Sept. 3, 1993)—an unpublished lecture. J. J. Venkrbec, Materials Engineering for Electronics, in the Preliminary Program: Poster Session C5 of the ‘CHISA ‘93’ (Prague, Aug. 29–Sept. 3, 1993) Czechoslovak Society of Chemical Engineering, Prague-1, P.O.B. 857, p. 21. J. J. Venkrbec, ‘Materials Engineering for Optoelectronic Crystals Related to III–V Compounds’ on the Czech-Slovak-French-Polish Conf. on Calorimetry and Experimental Thermoanalysis in Praha (Sept. 1993). J. J. Venkrbec, J. Kousal, J. Štětina, D. Nohvica and J. Sedláček, Materials Engineering for Electronics (MEE), in: Proc. ‘CTU SEMINAR ‘94’, Eds. M. Vrbová and J. Vrba, part B CTU-Prague, Publ. House, 1994, p. 167–8. J. J. Venkrbec, J. Kousal, J. Štětina, J. Fiksa, V. Papež, V. Rosická, V. Knobloch, J. Leitner, J. Kohout, D. Nohavica and J. Sedláček, Novel Growth Methods of Optoelectronic Crystals, in: Proc. ‘CTU SEMINAR ‘94’, Eds. M. Vrbová and J. Vrba, part B CTU-Prague, Publ. House, 1994, pp. 169–170.

  2. B. L. H. Wilson, J. Crystal Growth, 79 (1986) 3. K. Takashi, Intelligent Materials for Future Electronics, in: Proc. U.S.-Japan Workshop on Smart/Intelligent Mateirals and Systems, Honolulu, 1990, Technomic Publ. AG Basel, Switzerland, 1991.

    Article  CAS  Google Scholar 

  3. J. J. Venkrbec, ‘E-MRS. '93 Spring Meeting, Strasbourg May 1993’, A Report in: CTU-News, 2, 5 (May 1993) 5–6 [Available thorough the Bitnet command ‘GET CTU-NEWS LOG 9305’ from the address: ‘LISTSERV@CSEARN. BITNET’].

  4. D. Nohavica and J. Těmínová, “Controlled Epitaxial Growth of GaInAsP/InP from the Liquid Phase’, Crystal Properties and Preparation, Vol. 32–34, Trans. Tech. Publ., Switzerland 1991, pp.630–634.

    Google Scholar 

  5. D. Nohavica, J. Těmínová, D. Berková, J. Zelinka, M. Zahrádková, J. Zavadil and V. Malina, ‘1.07–1.67 m GaInAsP/InP DC PBH Injection Lasers’, in: Proc. Int. Conference on Photonics, Olomouc, Rozvid, Praha, Czech Republic 1992, pp. 247–56.

  6. R. N. Thomas, H. M. Hobgood, P. S. Ravishenkar and T. T. Braggins, Progr. Crystal Growth Charact., 26 (1993) 219.

    Article  CAS  Google Scholar 

  7. T. Nishinaga and T. Suzuki, J. Crystal Growth, 128 (1993) 37.

    Article  CAS  Google Scholar 

  8. K. A. Jackson, G. H. Gilmer, D. E. Temkin, J. D. Weinberg and K. Beaty, J. Crystal Growth, 128 (1993) 127.

    Article  CAS  Google Scholar 

  9. H. E. Sell and G. Mueller, J. Crystal Growth, 97 (1989) 194.

    Article  CAS  Google Scholar 

  10. J. J. Venkrbec, J. Crystal Growth, 48 (1980) 611.

    Article  CAS  Google Scholar 

  11. J. J. Venkrbec, ‘Multicomponent Semiconductors and Crystallization Methods’, Habilitation Thesis, CTU-Prague, 1975, p.99—in Czech. J. J. Venkrbec, ‘Materials Engineering of Electronics and State Diagrams’, ad hoc meeting at the ISSCG-4 (4th International Summer School on Crystal Growth), Suzdal’, USSR (1980) —an unpublished lecture. J. J. Venkrbec, ‘Materials Engineering of Electronics’, Acta Polytechnica III/I CTU-Prague, 1981, pp. 113–26 [in Czech, resume in Russian and in English. J. J. Venkrbec, ‘Some Aspects of Materials Engineering for Electronics’, Clarkson Univ. of Technol., USA (1981) invited;—an unpublished lecture.

  12. S. Miyazawa, Progr. Crystal Growth Charact., 23 (1991) 23.

    Article  Google Scholar 

  13. Kinetic Phase Diagrams, Eds. Z. Chvoj, J. Šesták and A. Tříska, Elsevier, Amsterdam 1991, p.613.

    Google Scholar 

  14. J. Šesták, Z. Strand, A. Třískaet al. (Eds.), ‘Special Techniques and Materials’ Academia, Prague 1993, pp.688—in Czech.

    Google Scholar 

  15. D. T. J. Hurle (Ed.), ‘Handbook of Crystal Growth I–III’, North Holl., Amsterdam, 1993–94.

    Google Scholar 

  16. The Bulletins of the MIT, Stanford, Caltech, Michigan and Virginia Universities, 1992.

  17. Ch. Charbon and M. Rappaz, Modelling Simul. Mater. Sci. Eng., 1 (1993) 455. S. Iwata, MRS Bull., 18 (1993) 29.

    Article  CAS  Google Scholar 

  18. Both CTU-NEWS, see [3], and informative catalogs are also available under GOPHER system at ‘vedec.cvut.cz’.

  19. A. F. Witt, ‘Non-Invasive Bulk Characterization of GaAs and Si Wafers’, in: ICCG-10 Oral Present. Abstr, 1992, p.69.

  20. R. Podmanicky, J. J. Venkrbec, Elektronika, 10 (1990) 21 (in Czech).

    Google Scholar 

  21. J. J. Venkrbec, Z. Čečil, V. Rosická and J. Kohout, Thermochim. Acta, 213 (1993) 261.

    Article  CAS  Google Scholar 

  22. J. J. Venkrbec, J. Kousal, L. Kaláb, V. Rosická, J. Kohout, V. Knobloch, Z. Čečil, Z. Kodejš and M. Skokánek, Crystallization of ‘Tunable’ Ternary solid Solutions, in Proc. Semiconductor Materials for Optoelectronic Devices, OEIC's and Photonics [‘E-MRS 1993 Spring Meeting’, Strasbourg, May '93]—an unpublished lecture.

  23. J. J. Venkrbec, J. Kousal, L. Kaláb, V. Rosická, J. Kohout, Z. Čečil, J. Sedláček, Z. Kodejš and M. Skokánek, Materials Sci. Eng., A 173 (1993) 197.

    Article  Google Scholar 

  24. G. A. Wolff and A. I. Mlavsky, ‘Travelling Solvent Techniques’, ‘Crystal Growth, Theory and Techniques’, Ed. C. H. L. Goodman, Vol. 1, Plenum Pr., N.Y., 1974, pp. 193–232.

    Google Scholar 

  25. V. N. Lozovskii and V. P. Popov, Progr. Crystal Growth Charact., 6 (1983) 1.

    Article  CAS  Google Scholar 

  26. G. Bischopink and K. W. Benz, J. Crystal Growth, 97 (1989) 245.

    Article  CAS  Google Scholar 

  27. G. Bischopink and K. W. Benz, J. Crystal Growth, 130 (1993) 45.

    Article  CAS  Google Scholar 

  28. A. N. Danilewsky, K. W. Benz and T. Nishinaga, J. Crystal Growth, 99 (1990) 1281.

    CAS  Google Scholar 

  29. F.-M. Kiessling and H. S. Leipner, J. Crystal Growth, 128 (1993) 599.

    CAS  Google Scholar 

  30. K. W. Benz, in Progr. Crystal Growth Charact., 26 (1993) 267.

    Article  CAS  Google Scholar 

  31. J. C. Brice, Crystal Growth Processes, Blackie Halsted Pr., 1986, p.298.

  32. Y. Hayakawa and M. Kumagawa, Crystal Res. Technol., 20 (1985) 3.

    CAS  Google Scholar 

  33. W. S. Liu, M. F. Wolf, D. Elwell and R. S. Feigelson, J. Crystal Growth, 82 (1987) 58.

    Google Scholar 

  34. R. Caram, M. Banan and W. R. Wilcox, J. Crystal Growth, 114 (1991) 249.

    Article  CAS  Google Scholar 

  35. A. N. Danilewsky, P. Dold and K. W. Benz, J. Crystal Growth, 121 (1992) 305.

    Article  CAS  Google Scholar 

  36. Yu. M. Gelfgat, Control of the Crystallization front Shape by a Rotating Magnetic Field in the Bridgman Process, in: Final Book of Abstracts, E-MRS '93 Spring Meeting Strasbourg, Council of Europe, 1993, F-1.6.

  37. J. Štětina, Laboratory Apparatus for MHD Processes of a Semiconductor Crystallization, Diploma Thesis, CTU-Prague, Fac. Electr. Eng., 1993—(in Czech).

  38. J. J. Venkrbec, J. Štětina, J. Kousal, L. Kaláb, V. Rosická, J. Kohout, Z. Čečil and L. Prandžev, Materials Sci. Eng., A173 (1993) 189.

    Article  Google Scholar 

  39. J. J. Venkrbec, Z. Čečil, V. Rosická, J. Kohout, J. Sedláček, Z. Kodejš and P. Pacák, Novel Approaches to Crystal Growth of Bulk Ternary Solid Solutions, on ICCG-10, Oral Present. Abstr. 1992, p. 70.

  40. J. J. Venkrbec, V. Rosická, J. Kohout, V. Knobloch, J. Kousal and L. Kaláb, New Ways to Optoelectronic Crystals, in: Proc. ‘workshop '93’, Eds. M. Vrbová and I. Středa CTU-Prague, Publ. House, 1993, Part A, p. 177–8.

  41. S. Jirků, Research activity of the Dept. Mechanics and Materials Sci., In a mail body you can send a command ‘GET G312’ on the address: ‘LISTSERV@CSEARN.BITNET’].

  42. J. J. Venkrbec, J. Kousal, J. Štětina, J. Fiksa, V. Papež, V. Rosická, V. Knobloch, J. Leitner and J. Kohout. Novel Growth Methods of Optoelectronic Crystals Based on Antimonides, J. Thermal Anal., 43 (1995) 399.

    CAS  Google Scholar 

  43. Fuh Shyang Juang and Yun Kuin Supplied, Progr. Crystal Growth Charact., 20 (1990) 285.

    CAS  Google Scholar 

  44. G. Bischopink and K. W. Benz, J. Crystal Growth, 108 (1991) 465.

    Article  CAS  Google Scholar 

  45. W. R. Wilcox, Progr. Crystal Growth Charact., 26 (1993) 153.

    Article  CAS  Google Scholar 

  46. A. A. Chernov, Progr. Crystal Growth Charact., 26 (1993) 195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkrbec, J.J., Kousal, J. Materials engineering for optoelectronic crystals related to III–V compounds. Journal of Thermal Analysis 43, 377–388 (1995). https://doi.org/10.1007/BF02546825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546825

Keywords

Navigation