Skip to main content
Log in

Skeletal formation in the modern but ultraconservative chaetetid spongeSpirastrella (Acanthochaetetes) wellsi (demospongiae, porifera)

  • Published:
Facies Aims and scope Submit manuscript

Summary

The modern hadromerid coralline spongeSpirastrella (Acanthochaetetes) wellsi exhibits a unique secondary high-Mg calcite (>19 mol % MgCO3) basal skeleton. The basal skeleton is constructed of bundles of elongated crystals more or less tangentially orientated. The initial formation of these crystals is controlled by soluble highly acidic aspartic and glutamic-rich (40%) macromolecules. The skeletal mineralization occurs in four different loci: in the top of the calicles, at the tabulae, on collagenous anchor fibres, and within closed spaces between the tabulae. The clicle walls are formed on the uppermost top of the basal skeleton as a continuous process. Based on long term stainings with Ca2+-chelating fluorochroms (calcein, chlorotetracyclines) the growth rate of this sponge is extremely low with ca. 50–100μm/a. The skeletal formation takes places outside the sponge, within a narrow zone (300–500 nm) between the basopinacoderm and the mature basal skeleton. The sponge produces thread-like folded templates (‘spaghetti fibres’) of 0,5–2 μm size, the shape controlling insoluble organic matrix. These templates become mineralized in a first step as MgCO3, then are stretched. A soluble organic matrix is also secreted, and remains are included inside the mineralized skeleton. This organic matrix consists of in a complex mixture containing small very acidic proteins (5, 13, 31 KD; 40% Asp and Glu and therefore most probably Ca2+-binding) and high molecular weight glycoproteins among several other organic compounds. The mature crystals are high-Mg calcites. During calcification large cells with large reserve granules (LCG) are always present in a tight connection with the basopinacoderm. These cells form also the collagenous anchor fibres. Primary tabulae are formed by a non-collagenous organic sheet. Calcification happens only when LCG cells are enriched on the organic sheet. Randomly oriented high-Mg calcite crystals are growing on the collagenous anchor fibres. The same type of the mineralization is observed within the spaces of the tabulae. This particular case of mineralization is controlled by decaying sponge tissue (ammonification). The δ13C values are in equilibrium with the ambient sea water and vary between +3.2 and +2.8 ‰. The mode of mineralization of the basal skeleton can be described as biologically induced resp. matrix mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi, L., Moradian, J., Shay, E., Maroudas, N.G., &Weiner, S. (1987): A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization.—Proc. Natl. Acad. Sci. USA.,88, 2732–2736, New York

    Article  Google Scholar 

  • Addadi, L., &Weiner, S. (1985): Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.—Proc. Nat. Acad. Sci. USA.,82, 4110–4114, New York

    Article  Google Scholar 

  • Crenshaw, M.A. (1991): Mineral induction by immobilized polyanions.—In: Suga, S., Nakahara, H. (eds): Mechanisms and phylogeny of mineralization in biological systems.— 101–105, Berlin (Springer)

    Google Scholar 

  • Cuif, J.P., Gautret, P. &Marin, F. (1991): Correlation between the size of crystals and the molecular weight of organic fractions in the soluble matrices of mollusc, coral and sponge carbonate skeletons.—In:Suga, S., Nakahara, H. (eds): Mechanisms and phylogeny of mineralization in biological systems.—391–395, Berlin (Springer)

    Google Scholar 

  • Druffel, E.R.M. &Benavides, L.M. (1986): Input of excess CO2 to the surface ocean based on13C/12C ratios in a banded Jamaican sclerosponge.—Nature,321, 58–61; London

    Article  Google Scholar 

  • Fischer, J.C. (1970): Revision et essai de classification des Chaetetida (Cnidaria) post-paleozoiques.—Ann. Paléont. (Invert.),56, 151–220, Paris

    Google Scholar 

  • Franc, S., Huc, A. &Chassagne, G. (1974): Etude ultrastructurale et physico-chimique de l’axe squelettiquede Veretillum cynomorium Pall (Cnidaire, Anthozoaire): cellules, calcite, collagene.—Journ. Microscopie,21, 1, 93–110, Paris

    Google Scholar 

  • Gautret, P. (1989): Premieres donnees sur les masses moleculaires des composes organiques associes aux squelettes aspiculaires de spongiaires calcifies (Demospongiae et Calcarea).—C.R. Acad. Sci. Paris,309, ser II, 1083–1088, Paris

    Google Scholar 

  • Gautret, P. &Marin, F. (1990): Composition en acides amines des phases proteiques solubles et insolubles de trois demosponges actuelles:Ceratoporella nicholsoni (Hickson),Astrosclera willeyana Lister etVaceletia crypta (Vacelet). —C.R. Acad. Sci. Paris,310, ser II. 1369–1374, Paris

    Google Scholar 

  • Gautret, P., Reitner, J. & Marin, F. (1995, in press): Mineralization events during growth of the coralline spongesAcanthochaetetes andVaceletia.—Bull. Inst. ocean. Monaco nom spec.14/2, Monaco

  • Glimcher, M.J. &Krane, S.M. (1968): The organization and structure of bone and the mechanism of calcification. In: Gould, B.S. (ed) Treatise on collagen.—vol2, 67–251, London (Academic Press)

    Google Scholar 

  • Goldberg, W.M. (1976): Comparative study of the chemistry and structure of gorgonian and antipatharian coral skeletons. —Mar. Biology,35, 253–267, New York

    Article  Google Scholar 

  • Hartman, W.D. & Goreau, T.F. (1975): A Pacific tabulate sponge, living representative of a new order of Sclerosponges. —Postilla,167, 21 pp., New Haven

  • Ledger, P.W. &Franc, S. (1978): Calcification of the collagenous axial skeleton ofVeretillum cyomorium Pall (Cnidaria: Pennatulacea).—Cell. tiss. Res.,192, 249–266, Berlin

    Article  Google Scholar 

  • Mann, S. (1988): Molecular recognition in biomineralization.— Nature,332: 119–124, London

    Article  Google Scholar 

  • Mann, S., Heywood, B., Rajam, S. &Wade, V. (1991): Molecular recognition in biomineralization.—In:Suga, S., Nakahara, H. (eds): Mechanisms and phylogeny of mineralization in biological systems.—47–55, Berlin (Springer)

    Google Scholar 

  • Marin, F. &Gautret, P. (1993): Les teneurs en acides aminés acides des matrices organiques solubles associées aux squelettes calcaires des démosponges et des enidaires: une implication possible dans leur transformation diagénétique.—Bull. Soc. géol. Fr.,165, 1, 77–84, Paris

    Google Scholar 

  • McConnaughey, T. (1989):13C and18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects.—Geochimica et Cosmochimica Acta,53, 163–171, Amsterdam

    Article  Google Scholar 

  • Nakahara, H. (1979): An electron microscopic study of the growing surface of nacre in two gastropod speciesTurbo cornutus andTegala pfeifferi.—Venus,38, 205–211, London

    Google Scholar 

  • Pucci-Minafra, I., Galante, R. &Minafra, S. (1978): Identification of collagen in the aristotle’s laternae ofParacentrotus lividus.—J. Submicr. Cytol.,10, 53–63, Bologna

    Google Scholar 

  • Reitner, J. (1982): Die Entwicklung von Inselplattformen und Diapir-Atollen im Alb des Basko-Kantabrikums (Nordspanien). —N. Jb. Geol. Paläont. Abh.,165, 87–101, Stuttgart

    Google Scholar 

  • — (1987): Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Basko-Kantabrischen Strike Slip Fault-Becken-System (Nordspanien) an der Wende von der Unterkreide zur Oberkreide.—Documenta naturae,40, 1–248, München

    Google Scholar 

  • Reitner, J. (1989): Lower and Mid-Cretaceous Coralline sponge Communities of the Boreal and Tethyan Realms in Comparison with the Modern Ones.—In:Wiedmann, J. (ed.): Cretaceous of the Western Tethys.—Proc. 3rd Internat. Cretaceous Symp., 851–878, Tübingen 1987; Stuttgart (Schweizerbart)

    Google Scholar 

  • — (1991): Phylogenetic aspects and new descriptions of spicule bearing hadromerid sponges with a secondary calcareous skeleton (Tetractinomorpha, Demospongiae).—In:Reitner, J., Keupp, H. (eds): Fossil and Recent Sponges.—179–211, Berlin (Springer)

    Google Scholar 

  • Reitner, J. (1992): Coralline Spongien’. Der Versuch einerphylogenetischtaxonomischen Analyse.—Berliner geowiss. Abh., E,1, 352 pp., Berlin

  • — (1993): Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) Formation and Concepts.—Facies29, 3–40, Erlangen

    Google Scholar 

  • Reitner, J., &Engeser, T. (1983): Contribution to the systematics and the paleoecology of the family AcanthochaetetidaeFischer 1970 (Order Tabulospongida, class Sclerospongiae. —Geobios,16, 773–779, Lyon

    Google Scholar 

  • — (1987): Skeletal structures and habitats of recent and fossilAcanthochaetetes (subclass Tetractinomorpha, Demospongiae, Porifera.—Coral Reefs,6, 13–18, Berlin

    Article  Google Scholar 

  • Silberberg, M.S., Ciereszko, L.S., Jacobson, R.A. &Smith, E.C. (1972): Evidence for a collagen-like protein within spicules of coelenterates.—Comp. Biochem. Physiol.,43, 323–332

    Article  Google Scholar 

  • Tarutani, T, Clayton, R.N &Mayeda, T.K. (1969): The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. —Geochim. Cosmochim. Acta,33, 987–996, Amsterdam

    Article  Google Scholar 

  • Travis, D.F. (1970): The comparative ultrastructure and organization of five calcified tissues.—In:Schraer, H. (ed.): Biological calcification.—203–311, New York (Appleton-Century-Crofts)

    Google Scholar 

  • Vacelet, J. (1985): Coralline sponges and the evolution of Porifera.—In:Conway Morris, S. et al. (eds): The origins and relationships of lower invertebrates.—Systematics Assoc. spec.,28, 1–13, London

  • — (1990): The storage cells of calcified relict sponges.—In:Rützler, K. (ed): New perspectives in sponge biology.— 144–152, Washington (Smithsonian Institution Press)

    Google Scholar 

  • Vacelet, J., & Garrone, R. (1985): Two distinct populations of collagen fibrils in a ‘sclerosponge’ (Porifera).—In:Bairati, A., Garrone, R. (eds) Biology of invertebrate and lower vertebrate collagens.—NATO ASI Ser A: Life Sciences,93, 183–189, Berlin

  • Weiner, S. (1979): Aspartic acid-rich proteins: a major component of the soluble organic matrix of mollusk shells.—Calcif. Tiss. Int.,29, 163–167, Berlin

    Article  Google Scholar 

  • Weiner, S. &Traub, W. (1984): Macromolecules in mollusc shells and their functions in biomineralization.—Phil. Trans. R. Soc. Lond., B,304, 425–434, London

    Google Scholar 

  • Weiner, S. &Traub, W. (1986): Organization of hydroxyapatite crystals within collagen fibrils.—FEBS Lett.,206, 262–266, Amsterdam

    Article  Google Scholar 

  • — (1991): Organization of crystals in bone.—In:Suga S, Nakahara H (eds): Mechanisms and phylogeny of mineralization in biological systems.—247–253, Berlin (Springer)

    Google Scholar 

  • Wheeler, A.P., George, W.J., &Sikes, C.S. (1981): Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell.—Science,212, 1397–1398, Washington

    Article  Google Scholar 

  • Wheeler, A.P. &Sikes, C.S. (1984): Regulation of carbonate calcification by organic matrix.—Am. Zool.,24, 933–944, New York

    Google Scholar 

  • Willenz, Ph. &Hartman, W.D. (1985): Calcification rate ofCeratoporella nicholsoni (Porifera: Sclerospongiae): Anin situ study with calcein.—Proc. 5th Internat. Coral Reef Cong., Tahiti 1985,5, 113–118, Tahiti

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitner, J., Gautret, P. Skeletal formation in the modern but ultraconservative chaetetid spongeSpirastrella (Acanthochaetetes) wellsi (demospongiae, porifera). Facies 34, 193–207 (1996). https://doi.org/10.1007/BF02546164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546164

Keywords

Navigation