Skip to main content
Log in

Specific susceptibility of docosahexaenoic acid and eicosapentaenoic acid to peroxidation in aqueous solution

  • Published:
Lipids

Abstract

The peroxidation of different polyunsaturated fatty acids (PUFA) after photoirradiation in aqueous solution was evaluated by measuring fatty acid loss and malonaldehyde production in medium. The oxidation rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two highly unsaturated fatty acids of the n−3 series, were surprisingly lower (14 and 22%, respectively) than the oxidation rates of linoleic, α-linolenic, γ-linolenic, dihomo γ-linolenic, and arachidonic acids (62–90%). The quantities of malonaldehyde (MA) produced were assayed simultaneously by gas chromatography (GC) and high performance liquid chromatography (HPLC). MA production was found to be related to both the degree of unsaturation and the metabolic series of the fatty acid. The maximum value was observed with arachidonic acid (MA production from 2 mM arachidonic acid in aqueous solution was estimated at 44.9±6.0 μM by GC and 46.8 ±4.0 μM by HPLC). Eicosapentaenoic acid and docosahexaenoic acid produced lower MA quantities compared to arachidonic acid (MA production from 2 mM EPA and 2 mM DHA was estimated at 17.9±1.5 μM and 37.9±0.7 μM, respectively, by GC, and 26.3±4.9 μM and 37.3±4.2 μM, respectively, by HPLC). The MA yield, defined as the amount of MA (nmols) produced per 100 nanomoles of oxidized fatty acid, was used to express the susceptibility of individual PUFA to peroxidation. The MA yield correlated well with the degree of unsaturation, but was independent of carbon chain length and metabolic series. The study suggests that adequate assessment of lipid peroxidation cannot be achieved by measuring MA formation alone, but it also requires knowledge of the fatty acid composition of the system studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

acetylacetone

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

FID:

flame ionization detector

GC:

gas chromatography

BBT:

2-hydrazinobenzothiazole

HBT-AA:

2-(3′,5′-dimethylpyrazol-1′-yl)benzothiazole

HBT-MA:

2-(pyrazol-1′-yl)benzothiazole

HPLC:

high performance liquid chromatography

MA:

malonaldehyde

NPD:

nitrogen phosphorus detector

PUFA:

polyunsaturated fatty acids

TBA:

thiobarbituric acid

TMP:

1,1,3,3-tetramethyoxypropane

References

  1. Halliwell, B., and Gutteridge, J.M.C. (1985)Free Radicals in Biology and Medicine, p. 139, Oxford University Press, New York.

    Google Scholar 

  2. Bachowski, G.J., Thomas, J.P., and Girotti, A.W. (1988)Lipids 23, 580–586.

    Article  PubMed  CAS  Google Scholar 

  3. Dahle, L.K., Hill, E.G., and Holman, R.T.,Arch. Biochem. Biophys. 98, 253–261.

  4. Pryor, W.A., Stanley, J.P., and Blair, E. (1976)Lipids 11, 370–379.

    Article  PubMed  CAS  Google Scholar 

  5. Olivieri, O., Negri, M., de Gironcoli, M., Bassi, A., Guarini, P., Stanzial, A.M., Grigolini, L., Ferrari, S., and Corrocher, R. (1988)Scand. J. Clin. Lab. Invest. 48, 659–665.

    PubMed  CAS  Google Scholar 

  6. Hebbel, R.P., and Miller, W.J. (1988)Am. J. Hematol. 29, 222–225.

    PubMed  CAS  Google Scholar 

  7. Gutteridge, J.M.C. (1982)Int. J. Biochem. 14, 649–653.

    Article  PubMed  CAS  Google Scholar 

  8. Beljean-Leymarie, M., and Bruna, E. (1988)Anal. Biochem., 173, 174–184.

    Article  PubMed  CAS  Google Scholar 

  9. Umano, K., Dennis, K.J., and Shibamoto, T. (1988)Lipids 23, 811–814.

    Article  PubMed  CAS  Google Scholar 

  10. Ekström, T., Garberg, P., Egestad, B., and Hogberg, J. (1988)Chem.-Biol. Interactions 66, 177–187.

    Article  Google Scholar 

  11. Hirayama, T., Yamada, N., Nohara, M., and Fukui, S. (1984)J. Sci. Food Agric. 35, 289–296.

    Google Scholar 

  12. Csallany, A.S., Der Guan, M., Manwaring J.D., and Addis, P.B. (1984)Anal. Biochem. 142, 227–283.

    Article  Google Scholar 

  13. Bull, A.W., and Marnett, L.J. (1985)Anal. Biochem. 149, 1 284–290.

    Article  PubMed  CAS  Google Scholar 

  14. Esterbauer, H., Lang, J., Zadravec, S., and Slater, T.F. (1984)Methods Enzymol. 105, 319–328.

    PubMed  CAS  Google Scholar 

  15. Bird, R.P., and Draper, H.H. (1984)Methods Enzymol. 105, 299–305.

    Article  PubMed  CAS  Google Scholar 

  16. Melø, T.B., and Mahmoud, G.S. (1988)Magn. Reson. Chem. 26, 947–954.

    Article  Google Scholar 

  17. Ahmed, A.A., and Holub, B.J. (1984)Lipids 19, 617–624.

    Article  PubMed  CAS  Google Scholar 

  18. Cillard, J., and Cillard, P. (1980)J. Am. Oil Chem. Soc. 57, 39–52.

    CAS  Google Scholar 

  19. Folch, J., Lees, M., and Sloane Stanley, G. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Hagenfeldt, L. (1966)Clin. Chim. Acta 13, 266–268.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, J.B., Ingerman, C.M., and Sylver, M.J. (1976)J. Lab. Clin. Med. 88, 167–172.

    PubMed  CAS  Google Scholar 

  22. Holme, D.J., and Peck, H. (1983)Analytical Biochemistry, pp. 8–15, Langmann Inc., New York.

    Google Scholar 

  23. Cosgrove, J.P., Church, D.F., and Pryor, W.A. (1987)Lipids 22, 299–304.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, R.S., and LaBella, F.S. (1987)J. Lipid Res. 28, 1110–1117.

    PubMed  CAS  Google Scholar 

  25. Manwaring, J.D., and Csallany, A.S. (1988)Lipids, 23, 651–655.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bruna, E., Petit, E., Beljean-Leymarie, M. et al. Specific susceptibility of docosahexaenoic acid and eicosapentaenoic acid to peroxidation in aqueous solution. Lipids 24, 970–975 (1989). https://doi.org/10.1007/BF02544543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02544543

Keywords

Navigation