Skip to main content
Log in

Regulation of squalene synthetase and squalene epoxidase activities insaccharomyces cerevisiae

  • Published:
Lipids

Abstract

Squalene synthetase (EC 2.5.1.21) and squalene epoxidase (EC 1.14 99.7) activities have been measured in cell-free extracts of wild type yeast grown in aerobic and semianaerobic conditions as well as in sterol-auxotrophic mutant strains grown aerobically. The results show that both enzymes are induced resulting in an almost two- to five-fold increase in enzymatic activities in mutant strains containing limited sterol amounts and are repressed in the wild type strain cultured in anaerobiosis in excess of sterol. The results show also that squalene epoxidase is repressed by lanosterol, and that the mevalonic acid pool may regulate squalene synthetase levels.

The large change in the activities of the two enzymes, depending on the sterol needs of the cells, as well as their low specific activities in comparison with those of the enzymes involved in the early stages of sterol synthesis strongly suggests that squalene synthetase and squalene epoxidase are of importance in regulating the amount of sterol synthesized by yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

erg:

mutant gene involved in ergosterol biosynthesis

FAD:

flavin adenine dinucleotide

HMG1:

HMG2, genes

HMG-CoA:

hydroxy methyl glutaryl coenzyme A

LDL:

low-density lipoprotein

TLC:

thin-layer chromatography

tRNA:

transfer ribonucleic acid

References

  1. Brown, M.S., and Goldstein, J.L. (1980)J. Lipid Res. 21, 505–517.

    PubMed  CAS  Google Scholar 

  2. Basson, M.E., Thorness, M., and Rine, J. (1986)Proc. Natl. Acad. Sci. USA 83, 5563–5567.

    Article  PubMed  CAS  Google Scholar 

  3. Servouse, M., and Karst, F. (1986)Biochem. J. 240, 541–547.

    PubMed  CAS  Google Scholar 

  4. Karst, F., and Lacroute, F. (1977)Mol. Gen. Genet. 154, 259–277.

    Article  Google Scholar 

  5. Servouse, M., Mons, N., Baillargeat, J.L., and Karst, F. (1984)Biochem. Biophys. Res. Commun. 123, 424–430.

    Article  PubMed  CAS  Google Scholar 

  6. Trocha, P.J., and Sprinson, D.B. (1976)Arch. Biochem. Biophys. 174, 45–51.

    Article  PubMed  CAS  Google Scholar 

  7. Warburg, G.F., Wakeel, M., and Wilton, D.C. (1982)Lipids 17, 230–234.

    Article  PubMed  CAS  Google Scholar 

  8. Klein, H.P. (1955)J. Bacteriol. 69, 620–627.

    PubMed  CAS  Google Scholar 

  9. Boll, M., Löwel, M., Still, J., and Berndt, J. (1975)Eur. J. Biochem. 54, 435–444.

    Article  PubMed  CAS  Google Scholar 

  10. M'Baya, B., and Karst, F. (1987)Biochem. Biophys. Res. Commun. 147, 556–564.

    Article  PubMed  Google Scholar 

  11. Jahnke, L., and Klein, H.P. (1983)J. Bacteriol. 155, 488–492.

    PubMed  CAS  Google Scholar 

  12. Popjak, G. (1969)Methods in Enzymology 15, 393–454.

    Article  CAS  Google Scholar 

  13. Van Tamelen, E.E., and Curphey, T.J. (1962)Tetrahedron Letters 3, 121–124.

    Article  Google Scholar 

  14. Andreasen, A.A., and Stier, T.J.B. (1953) (a)J. Cell. Comp. Physiol. 41, 23–26; (b)J. Cell. Comp. Physiol. 43, 271–282.

    Article  CAS  Google Scholar 

  15. Pinto, W.J., Lozano, R., and Nes, W.R. (1985)Biochim. Biophys. Acta 836, 89–95.

    PubMed  CAS  Google Scholar 

  16. Karst, F., and Lacroute, F. (1973)Biochem. Biophys. Res. Commun. 52, 741–747.

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez, R.J., Low, C., Bottema, C.D.K., and Parks, L. (1985)Biochim. Biophys. Acta 837, 336–343.

    PubMed  CAS  Google Scholar 

  18. Lala, A.K., Lin, H.K., and Bloch, K. (1978)Bioorg. Chem. 7, 437–440.

    Article  CAS  Google Scholar 

  19. Dahl, J., Dahl, C., and Bloch, K. (1980)Biochemistry 19, 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  20. Field, R.B., and Holmlund, C.E. (1976)Biochim. Biophys. Acta 180, 465–471.

    Google Scholar 

  21. Faust, J.R., Goldstein, J.L., and Brown, M.S. (1979)Proc. Natl. Acad. Sci. USA 76, 5018–5022.

    Article  PubMed  CAS  Google Scholar 

  22. Caras, I.W., Friedlander, E.J., and Bloch, K. (1980)J. Biol. Chem. 255, 3575–3580.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

M'Baya, B., Fegueur, M., Servouse, M. et al. Regulation of squalene synthetase and squalene epoxidase activities insaccharomyces cerevisiae . Lipids 24, 1020–1023 (1989). https://doi.org/10.1007/BF02544072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02544072

Keywords

Navigation