Skip to main content
Log in

Cod lipids, solvent systems and the effect of fatty acid chain length and unsaturation on lipid class analysis by Iatroscan TLC-FID

  • Technical
  • Published:
Journal of the American Oil Chemists’ Society

Abstract

The chromatographic behavior of molecular species of free fatty acids, triglycerides, sterol esters and wax esters on Chromarods-SII was investigated in four developing solvent systems of different polarities. In accordance with previous reports it was observed that molecular species within a lipid class are partially separated according to the chain length and degree of unsaturation of the acyl groups. The separation is more affected by the degree of unsaturation than the chain length, especially in nonpolar solvent systems. In polar solvent systems the separation within a lipid class is less efficient; a slight separation according to the chain length was observed, and the degree of unsaturation had little or no influence. The partial separation of molecular species within a class leads to the superimposing of certain lipid classes, for example glyceryl ethers and highly unsaturated fatty acids of marine origin. This poses a potential problem in identification of Iatroscan peaks. However, with totally hydrogenated marine lipid samples a complete separation of the lipid classes was achieved when developed in a nonpolar solvent system. It is proposed that at least two kinds of authentic standards varying in the degree of unsaturation and chain length should be used for the identification of the peaks of natural lipid samples of unknown composition, and that total hydrogenation be applied to improve separations and ensure sample stability, and probably to improve quantitation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christie, W.W., and M.L. Hunter,J. Chromatogr. 171:517 (1979).

    Article  CAS  Google Scholar 

  2. Innis, S.M., and M.T. Clandinin, Ibid. 490 (1981).

    Article  CAS  Google Scholar 

  3. Harvey, H.R., and J.S. Patton,Anal. Biochem. 116:312 (1981).

    Article  CAS  Google Scholar 

  4. Foot, M., and M.T. Clandinin,J. Chromatogr. 241:428 (1982).

    Article  CAS  Google Scholar 

  5. Peterson, B., Ibid.:313 (1982).

    Article  Google Scholar 

  6. Ranny, M., M. Zbirousky, M. Blahova, V. Ruzikka and S. Truchlik, Ibid.:327 (1982).

    Article  CAS  Google Scholar 

  7. Kaitaranta, J.K.,J. Food Technol. 17:87 (1982).

    Article  CAS  Google Scholar 

  8. Hiramatsu, K., and S. Arimori,J. Chromatogr. 227:423 (1982).

    CAS  Google Scholar 

  9. Parrish, C.C., and R.G. Ackman, Ibid.:103 (1983).

    Article  CAS  Google Scholar 

  10. Kaneko, H.,Yukagaku 32:565 (1983).

    CAS  Google Scholar 

  11. Delmas, R.P., C.C. Parrish and R.G. Ackman,Anal. Chem. 56:1272 (1984).

    Article  CAS  Google Scholar 

  12. Parrish, C.C., and R.G. Ackman,Lipids 20:521 (1985).

    Article  CAS  Google Scholar 

  13. Ratnayake, W.M.N., and R.G. Ackman,Can. Inst. Food Sci. Technol. J. 18:284 (1985).

    CAS  Google Scholar 

  14. Volkman, J.K., D.A. Everitt and D.I. Allen,J. Chromatogr. 356:147 (1986).

    Article  CAS  Google Scholar 

  15. Fraser, A.J., D.R. Tocher and J.R. Sargent,J. Exp. Mar. Biol. Ecol. 88:91 (1985).

    Article  CAS  Google Scholar 

  16. Bligh, E.G., and M.A. Scott,J. Fish. Res. Bd. Canada 23:1025 (1966).

    CAS  Google Scholar 

  17. Addison, R.F., R.G. Ackman and J. Hingley, Ibid.:2083 (1968).

    CAS  Google Scholar 

  18. Ratnayake, W.M.N., A. Timmins, T. Ohshima and R.G. Ackman,Lipids 21:518 (1986).

    Article  CAS  Google Scholar 

  19. Kramer, J.K.G., R.C. Fouchard and E.R. Farnworth, Ibid.:617 (1985).

    Article  CAS  Google Scholar 

  20. Kramer, J.K.G., R.C. Fouchard and E.R. Farnworth,J. Chromatogr. 198:279 (1980).

    Article  CAS  Google Scholar 

  21. Ackman, R.G., inMethods in Enzymology, Vol. 72, Lipids part D, edited by J.M. Lowenstein, Academic Press, New York, NY, 1981, pp. 205–252.

    Google Scholar 

  22. Phillips, F., and C.V. Viswanathan,Lipids 2:437 (1967).

    Article  CAS  Google Scholar 

  23. Bligh, E.G., and W.J. Dyer,Can. J. Biochem. Physiol 37:911 (1959).

    CAS  Google Scholar 

  24. Galanos, D.S., and V.M. Kapoulas,J. Lipid Res. 3:134 (1962).

    CAS  Google Scholar 

  25. Snyder, L.R., inPrinciples of Adsorption Chromatography, Marcel Dekker, Inc., New York, NY, 1968, pp. 185–240.

    Google Scholar 

  26. Sipos, J.C., and R.G. Ackman,J. Chromatogr. Sci. 16:443 (1978).

    CAS  Google Scholar 

  27. Ackman, R.G., C.A. Eaton and C. Litchfield,Lipids 6:69 (1971).

    Article  CAS  Google Scholar 

  28. Kayama, M., Y. Tsuchiya and J.C. Nevenzel,Bull. Jpn. Soc. Sci. Fish 37:111 (1971).

    CAS  Google Scholar 

  29. Hayashi, K., and T. Takagi, Ibid.:281 (1981).

    CAS  Google Scholar 

  30. Body, D.R.,J. Sci. Food Agric. 36:679 (1985).

    Article  CAS  Google Scholar 

  31. Kramer, J.K.G., B.K. Thompson and E.R. Farnworth,J. Chromatogr. 355:221 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ohshima, T., Ratnayake, W.M.N. & Ackman, R.G. Cod lipids, solvent systems and the effect of fatty acid chain length and unsaturation on lipid class analysis by Iatroscan TLC-FID. J Am Oil Chem Soc 64, 219–223 (1987). https://doi.org/10.1007/BF02542005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02542005

Keywords

Navigation