Skip to main content
Log in

The existence conditions for bacterial plasmids: Theory and reality

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria abound with conjugative and nonconjugative plasmids that often carry genes determining a number of environmental adaptations. Plasmids may also encode genes that enable them to transmit themselves infectiously to new host cells, by conjugation or mobilization. The question of whether plasmids can be maintained in a bacterial community as parasitic DNA, that is, while conferring a selective disadvantage to their host, serves as a basic hypothesis in theoretical studies of the population biology of plasmids. The conditions necessary for the establishment and maintenance of plasmids have been determined analytically for the simplest possible models. Based on these a priori conditions, on some reconsiderations and extensions of these models, and on recent estimates of transfer rates of liquid and surface bacterial populations, it will be argued that within a bacterial population, a parasitic lifestyle is unlikely for most naturally occurring plasmids. This result raises anew the problem of how cryptic plasmids are maintained and why plasmids encode costly and elaborate genes for horizontal transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtman M, Kennedy N, Skurray R (1977) Cell-cell interactions in conjugatingEscherichia coli: Role of traT protein in surface exclusion. Proc Natl Acad Sci USA 74:5104–5108

    Article  PubMed  CAS  Google Scholar 

  2. Anderson ES (1968) The ecology of transferable drug resistance in the enterobacteria. Ann Rev Microb 22:131–180

    Article  PubMed  CAS  Google Scholar 

  3. Bouma JE, Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335:351–352

    Article  PubMed  CAS  Google Scholar 

  4. Bradley DE, Taylor DE, Cohen DR (1980) Specification of surface mating systems among conjugative drug resistance plasmids inEscherichia coli K-12. J Bact 143:1466–1470

    PubMed  CAS  Google Scholar 

  5. Brock TD (1971) Microbial growth rates in nature. Bacteriol Rev 35:39–58

    PubMed  CAS  Google Scholar 

  6. Broda P (1979) Plasmids. Freeman, San Francisco

    Google Scholar 

  7. Campbell A (1981) Evolutionary significance of accessory DNA elements in bacteria. Ann Rev Microb 35:55–83

    Article  PubMed  CAS  Google Scholar 

  8. Caugant DA, Levin BR, Selander RK (1981) Genetic diversity and temporal variation in theE. coli of a human host. Genetics 98:476–490

    Google Scholar 

  9. Chan PT, Ohmori H, Tomizawa J, Lebowitz J (1985) Nucleotide sequence and gene organization of ColE1 DNA. J Biol Chem 260:8925–8935

    PubMed  CAS  Google Scholar 

  10. Condit R, Levin BR (1990) The evolution of plasmids carrying multiple antibiotic resistance genes: The role of segregation, transposition, and homologous recombination. Am Nat 135: 573–596

    Article  Google Scholar 

  11. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microb 41:435–464

    Article  PubMed  CAS  Google Scholar 

  12. Cullum J, Collins JF, Broda P (1989) The spread of plasmids in model populations ofEscherichia coli K12. Plasmid 1:545–556

    Article  Google Scholar 

  13. Curtiss R III, Caro LG, Allison DP, Stallions DR (1969) Early stages of conjugation inE. coli. J Bact 100:1091–1104

    PubMed  CAS  Google Scholar 

  14. Dykhuizen D, Davies M (1980) An experimental model: Bacterial specialists and generalists competing in chemostats. Ecology 61:1213–1227

    Article  Google Scholar 

  15. Eberhard WG (1989) Why do bacterial plasmids carry some genes and not others? Plasmid 21:167–174

    Article  PubMed  CAS  Google Scholar 

  16. Falkow S (1975) Infectious multiple drug resistance. Pion, London

    Google Scholar 

  17. Freter R, Freter RR, Brichner H (1983) Experimental and mathematical models ofEscherichia coli plasmid transfer in vitro and in vivo. Infect Immun 39:60–84

    PubMed  CAS  Google Scholar 

  18. Gaffney D, Skurray R, Willetts NS (1983) Regulation of the F conjugation genes studied by hybridization andtra-lacZ fusion. J Mol Biol 168:103–122

    Article  PubMed  CAS  Google Scholar 

  19. Hartl DL, Medhora M, Green L, Dykhuizen DE (1986) The evolution of DNA sequences inEscherichia coli. Philosophical Transactions of the Royal Society, Serial B 312:191–204

    CAS  Google Scholar 

  20. Inselburg J, Ware P (1979) A complementation analysis of mobilization deficient mutants of the plasmid colE1. Mol Gen Genet 172:211–219

    Article  PubMed  CAS  Google Scholar 

  21. Ippen-Ihler K, Minkley EG Jr (1986) The conjugation system of F, the fertility factor ofEscherichia coli. Ann Rev Genet 20:593–624

    Article  PubMed  CAS  Google Scholar 

  22. Levin BR (1980) Conditions for the existence of R-plasmids in bacterial populations. In: Mitsuhashi S, Rosival L, Kremery V (eds) Fourth International Symposium on Antibiotic Resistance. Castle of Smolenice, Czechoslovakia, 1979, Springer-Verlag, New York, pp 197–202

    Google Scholar 

  23. Levin BR, Stewart FM, Rice VA (1979) The kinetics of conjugative plasmid transmission: Fit of a simple mass action model. Plasmid 2:247–260

    Article  PubMed  CAS  Google Scholar 

  24. Levin BR, Stewart FM (1980) The population biology of bacterial plasmids: A priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94:425–443

    PubMed  CAS  Google Scholar 

  25. Levin BR, Lenski RE (1983) Coevolution in bacteria and their viruses and plasmids. In: Futuyma J, Slatkin M (eds) Coevolution. Sinauer Associates, Sunderland, MA, pp 99–127

    Google Scholar 

  26. Lundquist PD, Levin BR (1986) Transitory derepression and the maintenance of conjugative plasmids. Genetics 113:483–497

    PubMed  CAS  Google Scholar 

  27. Meynell GG (1973) Bacterial plasmids. MIT Press, Cambridge, MA

    Google Scholar 

  28. Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    PubMed  CAS  Google Scholar 

  29. Reanney D (1976) Extrachromosomal elements as possible agents of adaptation and development. Bacteriol Rev 40:552–590

    PubMed  CAS  Google Scholar 

  30. Reeves P (1972) The bacteriocins. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  31. Simonsen L (1990) Dynamics of plasmid transfer on surfaces. J Gen Microbiol 136:1001–1007

    PubMed  CAS  Google Scholar 

  32. Simonsen L, Gordon DM, Stewart F, Levin BR (1990) Estimating the rate of plasmid transfer: An end point method. J Gen Microbiol 136:2319–2325

    PubMed  CAS  Google Scholar 

  33. Stewart FM, Levin BR (1977) The population biology of bacterial plasmids:A priori conditions for the existence of conjugationally transmitted factors. Genetics 87:209–228

    PubMed  Google Scholar 

  34. Sukupolvi S, O'Connor D (1990) TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev 54:331–341

    PubMed  CAS  Google Scholar 

  35. Timmis KN, Andres I, Achtman M (1978) Fertility repression of F-like conjugative plasmids: Physical mapping of the R6-5 finO and finP cistrons and identification of the finO protein. Proc Natl Acad Sci USA 75:5836–5840

    Article  PubMed  CAS  Google Scholar 

  36. Willetts NS (1981) Sites and systems for conjugal DNA transfer in bacteria. In: Levy SB, Clowes RC, Koenig, EL (eds) Molecular biology, pathogenicity, and ecology of bacterial plasmids. Plenum Press, New York, London, pp 207–215

    Google Scholar 

  37. Willetts NS (1974) The kinetics of inhibition of Flac transfer by R100 inE. coli. Mol Gen Genet 129:123–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonsen, L. The existence conditions for bacterial plasmids: Theory and reality. Microb Ecol 22, 187–205 (1991). https://doi.org/10.1007/BF02540223

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02540223

Keywords

Navigation