Skip to main content
Log in

Phase properties of mixtures of ceramides

  • Article
  • Published:
Lipids

Abstract

Ceramides have been proposed to have a central role in the function of the stratum corneum. Ceramides also influence the phase properties of model skin lipid mixtures, but the relevance of this to the stratum corneum function is controversial. Because the stratum corneum contains several classes of ceramides, the type of ceramides used in model mixtures of stratum corneum lipid lamellae may be important. Thus, the properties of α-hydroxy fatty acid containing (HFAC) and nonhydroxy fatty acid containing (NFAC) ceramides and their mixtures have been investigated. Ceramides were obtained by the conversion of purified bovine brain cerebrosides. Isolated, anhydrous HFAC underwent an endothermic solid to liquid transition at 92°C. With hydration, an endothermic transition at 71.8°C was observed which was accompanied by a reduction in the birefringence. The enthalpy increased from 66 to 89 J/g with a 20-d storage time. These thermal properties are very similar to those observed with hydroxy fatty acid containing cerebrosides. In contrast, anhydrous nonhydroxy fatty acid containing ceramides underwent a broad endothermic transition over the temperature range of 50–90°C. When hydrated, the initial endothermic transition was interrupted by an exothermic transition that was followed immediately by a second endothermic transition. During these thermal changes, there was a loss of birefringence, and with completion of the second endothermic transition, a nonbirefringent liquid was observed. NFAC samples, stored at 70°C for 5 min, cooled, and then rescanned, displayed only one endotherm at 75°C. The thermal behavior of mixtures of HFAC and NFAC was relatively simple, with a progressive decrease and broadening in the temperature of the phase transition as the proportion of NFAC increased up to weight fractions of NFAC of 0.7. At lower weight fractions, a plateau in thetransition temperature as a function of weight fraction was observed. Even at a weight fraction of 0.1 HFAC, no transition to a nonbirefringent liquid state was observed. The high enthalpic changes observed with mixtures of HFAC and NFAC are consistent with the proposed central role that ceramides have in the mechanical and permeability properties of the skin. Moreover, the marked difference in the properties of these two similar lipids may help to explain some of the properties of the stratum corneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FID:

flame-ionization detector

HFAC:

hydroxy fatty acid containing ceramides

HFA-CER:

hydroxy fatty acid containing cerebrosides

NFAC:

nonhydroxy fatty acid containing ceramides

NFA-CER:

nonhydroxy fatty acid containing cerebrosides

TLC:

thin-layer chromatography

References

  1. Bergelson, L.D. (1980)Lipid Biochemical Preparations, pp. 113–124, Elsevier, New York.

    Google Scholar 

  2. Lampe, M.A., Burlingame, A.L., Whitney, J., Williams, M.L., Brown, B.E., Roitman, E., and Elias, P.M. (1983)J. Lipid Res. 24, 120–130.

    PubMed  CAS  Google Scholar 

  3. Lampe, M.A., Williams, M.L., and Elias, P.M. (1983)J. Lipid Res. 24, 131–140.

    PubMed  CAS  Google Scholar 

  4. Wertz, P.W., and Downing, D.T. (1983)J. Lipid Res. 24, 759–765.

    PubMed  CAS  Google Scholar 

  5. Williams, M.C., and Elias, P.M. (1982)CRC Crit. Rev. Therap. Drug Carrier Syst. 3, 95–122.

    Google Scholar 

  6. Elias, P.M., Cooper, E.R., Korc, A., and Brown, B.E. (1981)J. Invest. Dermatol. 76, 297–301.

    Article  PubMed  CAS  Google Scholar 

  7. Elias, P.M., Goerke, J., and Friend, D.S. (1977)J. Invest. Dermatol. 69, 535–546.

    Article  PubMed  CAS  Google Scholar 

  8. Wertz, P.W., and Downing, D.T. (1982)Science 217, 1261–1262.

    Article  PubMed  CAS  Google Scholar 

  9. Karlsson, K.-A., and Pascher, I. (1971)J. Lipid Res. 12, 466–472.

    PubMed  CAS  Google Scholar 

  10. Pascher, I. (1976)Biochim. Biophys. Acta 455, 433–451.

    Article  PubMed  CAS  Google Scholar 

  11. Lofgren, H., and Pascher, I. (1977)Chem. Phys. Lipids 20, 273–284.

    Article  PubMed  CAS  Google Scholar 

  12. Pascher, I., and Sundell, S. (1977)Chem. Phys. Lipids 20, 175–191.

    Article  CAS  Google Scholar 

  13. Wertz, P.W., Sartzendruber, D.C., Kitko, D.J., Madison, K.C., and Downing, D.T. (1989)J. Invest. Dermatol. 93, 169–172.

    Article  PubMed  CAS  Google Scholar 

  14. Abraham, W., and Downing, D.T. (1991)Biochim. Biophys. Acta 1068, 189–194.

    Article  PubMed  CAS  Google Scholar 

  15. Fenske, D.B., Thewalt, J., Bloom, M., Kitson, N. (1994)Biophys. J. 67, 1562–1573.

    PubMed  CAS  Google Scholar 

  16. Ongpipattanakul, B., Francoeur, M.L., and Potts, R.O. (1994)Biochim. Biophys. Acta 1190, 115–122.

    Article  PubMed  CAS  Google Scholar 

  17. Bouwstra, J.A., de Vries, M.A., Gooris, G.S., Bras, W., Brussee, J., and Ponec, M. (1991)J. Control. Rel. 15, 209–220.

    Article  CAS  Google Scholar 

  18. Mattai, J., Froebe, C.L., Rhein, L.D., Simion, F.A., Ohlmeyer, H., Su, D.T., and Friberg, S.E. (1993)J. Soc. Cosmet. Chem. 44, 89–100.

    CAS  Google Scholar 

  19. Radin, N.S. (1976)J. Lipid Res. 17, 290–293.

    PubMed  CAS  Google Scholar 

  20. Carter, H.E., Rothfus, J.A., and Gigg, R. (1961)J. Lipid Res. 2, 228–234.

    Google Scholar 

  21. Wiedmann, T.S., and Salmon, A. (1991)Lipids 26, 364–368.

    Article  PubMed  CAS  Google Scholar 

  22. Mabrey, S., and Sturtevant, J.M. (1976)Proc. Natl. Acad. Sci. USA 73, 3862–3870.

    Article  PubMed  CAS  Google Scholar 

  23. O'Brien, J.L., and Rouser, G. (1964)J. Lipid Res. 5, 339–347.

    PubMed  Google Scholar 

  24. Shah, J., Atienza, J., Rawlings, A.V., and Shipley, G.G. (1994)Biophys. J. 66, A288.

    Google Scholar 

  25. Curatolo, W. (1982)Biochemistry 21, 1761–1764.

    Article  PubMed  CAS  Google Scholar 

  26. Curatolo, W., and Jungalwala, F.B. (1985)Biochemistry 24, 6608–6613.

    Article  PubMed  CAS  Google Scholar 

  27. Wu, W-G., Chong, P.L-G., and Guang, C-H. (1985)Biophys. J. 47, 237–242.

    Article  PubMed  CAS  Google Scholar 

  28. White, S.H., Mirejovsky, D., and King, G.I. (1988)Biochemistry 27, 3725–3732.

    Article  PubMed  CAS  Google Scholar 

  29. Ruocco, M.J., Atkinson, D., Small, D.M., Skarjune, R.P., Oldfield, E., and Shipley, G.G. (1981)Biochemistry 20, 5957–5966.

    Article  PubMed  CAS  Google Scholar 

  30. Bunow, M.R. (1979)Biochim. Biophys. Acta 574, 542–546.

    PubMed  CAS  Google Scholar 

  31. Jackson, M., Johnston, D.S., and Chapman, D. (1988)Biochim. Biophys. Acta 944, 497–506.

    Article  PubMed  CAS  Google Scholar 

  32. Johnston, D.S., and Chapman, D. (1988)Biochim. Biophys. Acta 939, 603–614.

    Article  PubMed  CAS  Google Scholar 

  33. Rehfeld, S.J., Plachy, W.Z., Williams, M.L., and Elias, P.M. (1988)J. Invest. Dermatol. 91, 499–505.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Han, CH., Sanftleben, R. & Wiedmann, T.S. Phase properties of mixtures of ceramides. Lipids 30, 121–128 (1995). https://doi.org/10.1007/BF02538264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538264

Keywords

Navigation