Skip to main content
Log in

Die Entstehung von Pyrit in rezenten Sedimenten des Piburger Sees

  • Published:
Schweizerische Zeitschrift für Hydrologie Aims and scope Submit manuscript

Abstract

The occurrence of pyrite (FeS2) and iron sulfide in surficial sediments of Piburger See was compared with thermodynamic calculations based on chemical analyses of iron and hydrogen sulfide in the interstitial water. The area below 17 m, where black spots were found in the sediments, showed ion products (log KFeS=aFe2·aHS/aH+) between−3.11 and −4.01. In areas with no visible FeS concretions logKFeS values were in the range of −4.74 to −5.77, thus thermodynamic calculations seem to be in accordance with the appearance of iron sulfide. Nevertheless pyrite framboids, composed by more than 1,000 single crystals, coul be found even in shallow parts of the lake. Therefore the formation of pyrite is assumed to occur in microniches (diatom frustules, testacean shells). Inside these microcompartments high concentrations of hydrogen sulfide are reached due to the anaerobic decomposition of organic matter, whereas iron and additional sulfur are supplied by the diffusion of ferrous iron and sulfate from the anoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. Barton, P.B., und Skinner, B.J.: Sulfide mineral stabilities. In: Barnes, H.L. (Ed.): Geochemistry of hydrothermal ore deposits, Wiley & Sons, N.Y. 1979.

    Google Scholar 

  2. Berner, R.A.: Thermodynamic stability of sediment iron sulfides. Am. J. Sci.265, 773–785 (1967).

    Article  CAS  Google Scholar 

  3. Berner, R.A.: Principles of chemical sedimentology, McGraw-Hill, N.Y. 1971.

    Google Scholar 

  4. Berner, R.A.: Early diagenesis. A theoretical approach, Princeton University Press, Princeton, N.J. 1980.

    Google Scholar 

  5. Bürgi, H.R.: Die Wirkung von NTA auf das Wachstum des Phytoplanktons unter besonderer Berücksichtigung des Eisens als Mikroelement. Schweiz. Z. Hydrol.36, 1–71 (1974).

    Article  Google Scholar 

  6. Clyne, J.D.: Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr.14, 454–458 (1969).

    Google Scholar 

  7. Davison, W.: Soluble inorganic ferrous complexes in natural waters. Geochim. cosmochim. Acta43, 1693–1696 (1979).

    Article  CAS  Google Scholar 

  8. Davison, W.: A critical comparison of the measured solubilities of ferrous sulfide in natural waters. Geochim. cosmochim. Acta44, 803–808 (1980).

    Article  CAS  Google Scholar 

  9. Davison, W., und Heaney, S.I.: Ferrous iron-sulfide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr.23, 1194–1200 (1978).

    CAS  Google Scholar 

  10. Davison, W., und Heaney, S.I.: Determination of the solubility of ferrous sulfide in a seasonally anoxic marine basin. Limnol. Oceanogr.25, 153–156 (1980).

    Article  CAS  Google Scholar 

  11. Ganthaler, O.: Elsenkreislauf und Eisenbakterien im Pelagia des Piburger-Sees (Ötztal, Tirol). Diss. Abt. Limnol. Innsbruck6, 1–167 (1977).

    Google Scholar 

  12. Garrels, R.M., und Christ, C.L.: Solutions, minerals and equilibria, Freeman, Cooper & Comp., San Francisco 1965.

    Google Scholar 

  13. Helgeson, H.C.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci.267, 729–804 (1969).

    Article  CAS  Google Scholar 

  14. Helgeson, H.C.: Program SUPCRT. Pric. comm. (1978).

  15. Helgeson, H.C., Delany, H.W., Nesbitt, H.W., und Bird, D.K.: Summary and critique of the thermodynamic properties of rock forming minerals. Am. J. Sci.278(A), 1–229 (1978).

    Google Scholar 

  16. Jørgensen, B.B.: Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Marine Biol.14, 7–17 (1977).

    Article  Google Scholar 

  17. Ladurner, J., und Schulz, O.: Der ehemalige Bergbau von Haderlehn (Ötztal). Veröff. Mus. Ferdinandeum Innsbr.49, 101–108 (1969).

    Google Scholar 

  18. Lindström, C.H.M., und Bågander, L.E.: In situ determination of the solubility product for freshly precipitated FeS(amorph)). Contrib. Microbial Geochem. Dept. Geol. Univ. Stockholm4 (1980).

  19. Pechlaner, R.: Die Restaurierung des Piburger Sees. Sonderh. Carinthia II (Festschrift Findenegg)41, 97–115 (1971).

    Google Scholar 

  20. Pechlaner, R.: Response of the eutrophied Piburger See to reduced external loading and removal of monilimnic water. Arch. Hydrobiol. Beih. Ergebn. Limnol.13, 293–305 (1979).

    Google Scholar 

  21. Psenner, R., Pechlaner, R., und Rott, E.: Ergebnisse des MAB-5-Projektes «Belastung und Belastbarkeit des Piburger Sees». Man and Biosphere, Project 5, Wien 1983 (im Druck).

  22. Pyzik, A.J.: The kinetics and mechanisms of sedimentary iron sulfide formation, S. 1–144. Ph.D. Univ. Maryland (1976).

  23. Tessenow, U.: Lösungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. IV. Reaktionsmechanismen und Gleichgewichte im System Eisen-Mangan-Phosphat im Hinblick auf die Vivianit-Akkumulation im Ursee. Arch. Hydrobiol., Suppl.47 (Falkau-Arbeiten 9), 1–79 (1974).

    CAS  Google Scholar 

  24. Tipping, E., Woof, C., und Cooke, D.: Iron oxides from a seasonally anoxic lake. Geochim. cosmochim. Acta45, 1411–1419 (1981).

    Article  CAS  Google Scholar 

  25. Vogler, P.: Zur Analytik kondensierter Phosphate und organischer Phosphate bei limnologischen Untersuchungen. Int. Revue ges. Hydrobiol.51, 775–785 (1966).

    CAS  Google Scholar 

  26. Volkov, I.I.: Iron sulfides, their interdependence and transformation in the Black Sea bottom sediments. Akad. Nauk SSSR, Inst. Okeanologii Trudy50, 68–92 (1961).

    CAS  Google Scholar 

  27. Wagner, G.: FeS-Konkretionen im Bodensee. Int. Revue ges. Hydrobiol.56, 265–272 (1971).

    CAS  Google Scholar 

  28. Walther, J.W., und Helgeson, H.C.: Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am. J. Sci.277, 1315–1351 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psenner, R. Die Entstehung von Pyrit in rezenten Sedimenten des Piburger Sees. Schweiz. Z. Hydrologie 45, 219–232 (1983). https://doi.org/10.1007/BF02538157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538157

Navigation