Skip to main content
Log in

Do rat kidney cortex microsomes possess the enzymatic machinery to desaturate and chain elongate fatty acyl-CoA derivatives?

  • Published:
Lipids

Abstract

Rat kidney cortex microsomal preparations were unable to catalyze Δ9, Δ6, and Δ5 desaturation of stearoylcoenzyme A (CoA), linoleoyl-CoA and dihomo-γ-linolenoyl-CoA, respectively. The kidney cortex microsomal fraction, however, did catalyze the malonyl-CoA dependent fatty acyl-CoA elongation. The biochemical properties of palmitoyl-CoA elongation were studied as a function of protein concentration, time, reduced nicotinamide adenine dinucleotide phosphate (NADPH), malonyl-CoA and substrate concentrations; of the substrates investigated, Δ6.9.12–18∶3 was the most active. Unlike what was observed in the hepatic system, a high-carbohydrate, fat-free diet did not induced kidney fatty acid chain elongation. All intermediate kidney cortex microsomal reactions,i.e., β-ketoacyl-CoA reductase, β-hydroxyacyl-CoA dehydrase andtrans-2-enoyl-CoA reductase activities, were significantly higher (greater than one order of magnitude) than the condensing enzyme activity, suggesting that the rate-limiting step in total elongation is the initial condensation reaction. Contrary to other reports, the results suggest that the kidney cannot synthesize arachidonic acid needed for eicosanoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

BHT:

butylated hydroxytoluene

BSA:

bevine serum albumin

CoA:

coenzyme A

FACES:

fatty acid chain elongation system

NADH:

reduced nicotinamide adenine dinucleotide

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

References

  1. Nugteren, D.H. (1965)Biochim. Biophys. Acta 106, 280–290.

    PubMed  CAS  Google Scholar 

  2. Donaldson, W.E., Wit-Peeters, E.M., and Scholte, H.R. (1970)Biochim. Biophys. Acta 202, 35–42.

    PubMed  CAS  Google Scholar 

  3. Seubert, W., and Podack, E.R. (1973)Mol. Cell. Biochem. 1, 29–40.

    Article  PubMed  CAS  Google Scholar 

  4. Podack, E.R., Saathoff, G., and Seubert, W. (1974)Eur. J. Biochem. 50, 237–243.

    Article  PubMed  CAS  Google Scholar 

  5. Bernert, Jr., J.T., and Sprecher, H. (1977)J. Biol. Chem. 252, 6736–6744.

    PubMed  CAS  Google Scholar 

  6. Bernert, Jr., J.T., Bourre, J.-M., Baumann, N.A., and Sprecher, H. (1979)J. Neurochem. 32, 85–90.

    Article  PubMed  CAS  Google Scholar 

  7. Bourre, J.-M., Daudu, O.L., and Baumann, N.A. (1975)J. Neurochem. 24, 1095–1097.

    Article  PubMed  CAS  Google Scholar 

  8. Keyes, S.R., Alfano, J.A., Jansson, I., and Cinti, D.L. (1979)J. Biol. Chem. 254, 7778–7784.

    PubMed  CAS  Google Scholar 

  9. Cinti, D.L., and Montgomery, M.R. (1976)Life Sci. 18, 1223–1228.

    Article  PubMed  CAS  Google Scholar 

  10. Oshino, N., and Sato, R. (1971)J. Biochem. (Tokyo) 69, 169–180.

    CAS  Google Scholar 

  11. Montgomery, M.R., and Cinti, D.L. (1977)Mol. Pharm. 13, 60–69.

    CAS  Google Scholar 

  12. Chern, J.C., and Kinsella, J.E. (1983)Biochim. Biophys. Acta 750, 465–471.

    PubMed  CAS  Google Scholar 

  13. Clark, D.L., and Queener, S.F. (1985)Biochem. Pharmacol. 34, 4305–4310.

    Article  PubMed  CAS  Google Scholar 

  14. Mandon, E.C., de Gomez Dumm, I.N.T., and Brenner, R.R. (1988)Acta Physiol. Pharmacol. Latinoam. 38, 49–58.

    PubMed  CAS  Google Scholar 

  15. Kawata, S., Chitranukroh, A., Owen, J.S., and McIntyre, N. (1987)Biochim. Biophys. Acta 896, 26–34.

    Article  PubMed  CAS  Google Scholar 

  16. Okuyama, H., Lands, W.E.M., Christie, W.W., and Gunstone, F.D. (1969)J. Biol. Chem. 244, 6514–6519.

    PubMed  CAS  Google Scholar 

  17. Suneja, S.K., Nagi, M.N., Cook, L., and Cinti, D.L. (1991)J. Neurochem. 57, in press.

  18. Bradford, M.M. (1976)Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  19. Suneja, S.K., Osei, P., Cook, L., Nagi, M.N., and Cinti, D.L. (1990)Biochim. Biophys. Acta 1042, 81–85.

    PubMed  CAS  Google Scholar 

  20. Nagi, M.N., Cook, L., Suneja, S.K., Peluso, P.S., Laguna, J.C., Osei, P., and Cinti, D.L. (1989)Biochem. Biophys. Res. Commun. 165, 1428–1434.

    Article  PubMed  CAS  Google Scholar 

  21. Nagi, M.N., Cook, L., Ghesquier, D., and Cinti, D.L. (1986)J. Biol. Chem. 261, 13598–13605.

    PubMed  CAS  Google Scholar 

  22. Stoffel, W., and Pruss, H.D. (1967)J. Lipid Res. 8, 196–201.

    PubMed  CAS  Google Scholar 

  23. Al-Arif, A., and Blecher, M. (1969)J. Lipid Res. 10, 344–345.

    PubMed  CAS  Google Scholar 

  24. Fong, J.C., and Schultz, H. (1981)Methods Enzymol. 71, 390–398.

    Article  PubMed  CAS  Google Scholar 

  25. Ellman, G.L. (1959)Arch. Biochem. Biophys. 82, 70–77.

    Article  PubMed  CAS  Google Scholar 

  26. Bernert, Jr., J.T., and Sprecher, H. (1979)J. Biol. Chem. 254, 11584–11590.

    PubMed  CAS  Google Scholar 

  27. Mahfouz, M.M., Smith, T.L., and Kummerow, F.A. (1984)Lipids 19, 214–222.

    Article  PubMed  CAS  Google Scholar 

  28. Keyes, S., and Cinti, D.L. (1980)J. Biol. Chem. 255, 11357–11364.

    PubMed  CAS  Google Scholar 

  29. Bernert, Jr., J.T., and Sprecher, H. (1978)Biochim. Biophys. Acta 531, 44–55.

    PubMed  CAS  Google Scholar 

  30. Smith, W.L. (1989)Biochem. J. 259, 315–324.

    PubMed  CAS  Google Scholar 

  31. Pace-Asciak, C.R., and Asotra, S. (1989)Free Radical Biol. and Med. 7, 409–433.

    Article  CAS  Google Scholar 

  32. Morrison, A.R. (1986)Am. J. Med. 80 (Suppl. 1A), 3–11.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein, M., and Lifschitz, M. (1987)Hepatology 7, 1359–1367.

    PubMed  CAS  Google Scholar 

  34. Arroyo, V., Planas, R., and Gines, P. (1988)ISI Atlas of Sci. Pharmacol., 215–221.

  35. Brenner, R. (1971)Lipids 6, 567–575.

    Article  PubMed  CAS  Google Scholar 

  36. Hagve, T., and Sprecher, H. (1989)Biochim. Biophys. Acta 1001, 338–344.

    PubMed  CAS  Google Scholar 

  37. Lefkowith, J.B., Flippo, V., Sprecher, H., and Needleman, P. (1985)J. Biol. Chem. 260, 15736–15744.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Suneja, S.K., Nagi, M.N., Cook, L. et al. Do rat kidney cortex microsomes possess the enzymatic machinery to desaturate and chain elongate fatty acyl-CoA derivatives?. Lipids 26, 359–363 (1991). https://doi.org/10.1007/BF02537199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537199

Keywords

Navigation