Skip to main content
Log in

Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters

  • Published:
Lipids

Abstract

The activity of the overt form of rat liver mitochondrial carnitine palmitoyltrasferase or CPT0 (EC 2.3.1.21) towards different fatty acid substrates was studied. The following non-esterified fatty acids (NEFA) and their CoA esters in the presence of 1% bovine serum albumin (BSA) were tested: 16∶0, 18∶0, 18∶1, 18∶2, 18∶3ω3, 20∶4, 20∶5ω3 and 22∶6ω3. The data fit a square hyperbolic model for enzyme catalysis (p<0.001, non-linear regression). Asymptotic Vmax and K0.5, substrate concentration at one-half Vmax, were calculated using total concentrations of acyl-CoA, or unbound concentrations of NEFA. BSA was found to act as a true substrate reservoir for NEFA in that the dissociation of the NEFA-BSA complex was 10–330 times faster than the CPT0 reaction. Regardless of form (NEFA or CoA ester), 18∶3ω3 gave the highest, while 22∶6ω3 and 18∶0 gave the lowest rates of acylcarnitine synthesis. Except for 18∶3ω3 and 18∶2, Vmax for NEFA was generally lower than for acyl-CoA, with the greates differences observed for 20∶4, 20∶5ω3 and 22∶6ω3, suggesting that acyl-CoA synthesis may also be important in the control of the entry of these fatty acids into the mitochondria. The data provide an enzymatic rationale for the relatively low content of 18∶3ω3 in esterified lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acyl-CoA:

fatty acid esters of coezyme A

BSA:

bovine serum albumin

CPT0 :

overt form of mitochondrial carnitine palmitoyltransferase

GLC:

gas-liquid chromatography

K0,5 :

kinetic parameter designating the substrate concentration at half maximal velocity Vmax

NEFA:

non-esterified fatty acids

TLC:

thin-layer chromatography

References

  1. McGarry, J.D., Leatherman, G.F., and Foster, D.W. (1978)J. Biol. Chem., 253, 4128–4136.

    PubMed  CAS  Google Scholar 

  2. McGarry, J.D., and Foster, D.W. (1981)Biochem. J. 200, 217–223.

    PubMed  CAS  Google Scholar 

  3. Saggreson, E.D., and Carpenter, C.A. (1981)FEBS Lett. 129, 225–228.

    Article  Google Scholar 

  4. Boon, M.R., and Zammit, V.A. (1988)Biochem. J. 249, 645–654.

    PubMed  CAS  Google Scholar 

  5. Zammit, V.A. (1984)Prog. Lipid. Res. 23, 39–67.

    Article  PubMed  CAS  Google Scholar 

  6. Singh, H., Derwas, N., and Poulos, A. (1987)Arch. Biochem. Biophys. 254, 526–533.

    Article  PubMed  CAS  Google Scholar 

  7. McGarry, J.D., Mills, S.E., Long, C.S., and Foster, D.W. (1983)Biochem. J. 214, 21–28.

    PubMed  CAS  Google Scholar 

  8. Aebi, H.E. (1983) inMethods of Enzymatic Analysis (Bergmeyer, H.U., ed.) Vol. III, pp. 273–282, Verlag Chemie, Basel.

    Google Scholar 

  9. Schmidt, E., and Schmidt, F.W. (1983) inMethods of Enzymatic Analysis (Bergmeyer, H.U. ed.) Vol. III, pp. 216–227, Verlag Chemie, Basel.

    Google Scholar 

  10. Mills, S.E., Foster, D.W., and McGarry, J.D. (1984)Biochem. J. 219, 651–608.

    Google Scholar 

  11. Bird, M.I., and Saggerson, E.D. (1985)Biochem. J. 230, 161–167.

    PubMed  CAS  Google Scholar 

  12. Miyazawa, S., Ozasa, H., Osumi, T., and Hashimoto, T. (1983)J. Biochem. (Tokyo) 94, 529–542.

    CAS  Google Scholar 

  13. McGarry, J.D., Leatherman, G.F., and Foster, D.W. (1978)J. Biol. Chem., 253, 4128–4136.

    PubMed  CAS  Google Scholar 

  14. Spector, A.A., Fletcher, J.E., and Ashbrook, J.D. (1971)Biochemistry 10, 3229–3232.

    Article  PubMed  CAS  Google Scholar 

  15. Svenson, A., Homer, E., and Andersson, L.O. (1974)Biochim. Biophys. Acta 342, 54–59.

    PubMed  CAS  Google Scholar 

  16. Sagnella, G.A. (1985)Trends. Biochem. Sci. 10, 100–103.

    Article  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Lewis-Farr, A., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–279.

    PubMed  CAS  Google Scholar 

  18. Pauly, D.F., and McMillin, J.B. (1988)J. Biol. Chem. 263, 18160–18167.

    PubMed  CAS  Google Scholar 

  19. Borgeson, C.E., Pardini, L., Pardini, R.S., and Reitz, R.C. (1989)Lipids 24, 290–295.

    PubMed  CAS  Google Scholar 

  20. Björntorp, P. (1968)J. Biol. Chem. 243, 2130–2133.

    PubMed  Google Scholar 

  21. Reid, J.C., and Husbands, D.R. (1985)Biochem. J. 225, 233–237.

    PubMed  CAS  Google Scholar 

  22. Clouet, P., Niot, I., and Bézard, J. (1989)Biochem. J. 263, 867–873.

    PubMed  CAS  Google Scholar 

  23. Derrick, J.P., and Ramsay, R.R. (1989)Biochem. J. 262, 801–806.

    PubMed  CAS  Google Scholar 

  24. Tinoco, J. (1982)Prog. Lipid Res. 21, 1–45.

    Article  PubMed  CAS  Google Scholar 

  25. LaPorte, D.C., Walsh, K., and Koshland, D.E., Jr. (1984)J. Biol. Chem. 259, 14068–14075.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gavino, G.R., Gavino, V.C. Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters. Lipids 26, 266–270 (1991). https://doi.org/10.1007/BF02537135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537135

Keywords

Navigation