Skip to main content
Log in

Maternal protein deficiency in rat: Effects on central nervous system gangliosides and their catabolizing enzymes in the offspring

  • Communications
  • Published:
Lipids

Abstract

Maternal protein deficiency imposed on rats a month prior to conception, and during gestation and lactation, resulted in a significant cell loss in cerebrum, cerebellum, brain stem and spinal cord of pups at weaning. The cerebellum was the most affected central nervous system (CNS) region; it contained only 25% of the normal cell number. Undernourished pups were also found to have a lower concentration of total gangliosides in cerebrum as compared to that of controls. However, the total ganglioside concentration was unaffected in the cerebellum, brain stem and spinal cord by maternal undernutrition. In all regions, undernutrition caused significant changes in the proportions of individual gangliosides; these alterations were region-specific. Sialidase, β-galactosidase, β-glucosidase, and β-hexosaminidase, which are involved in the catabolism of gangliosides, showed higher activities in all the regions of undernourished pups, suggesting that these enzymes may play a role in maintaining the porportions of various ganglioside fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

NANA:

N-acetylneuraminic acid

References

  1. Von Muralt, A. (1972) inLipids, Malnutrition and the Developing Brain, p. 73–90, Elsevier, Amsterdam.

    Google Scholar 

  2. Dobbing, J., and Smart, J.L. (1974)Brit. Med. Bull. 30, 164–168.

    PubMed  CAS  Google Scholar 

  3. Jacobson, M. (1978) inDevelopmental Neurobiology, 2nd edn., pp. 27–55, Plenum Press, New York and London.

    Google Scholar 

  4. Rajalakshmi, R., and Nakhasi, H.L. (1974)Exp. Neurol. 44, 103–112.

    Article  PubMed  CAS  Google Scholar 

  5. Reddy, P.V., and Sastry, P.S. (1978)Brit. J. Nutr. 40, 403–411.

    Article  PubMed  CAS  Google Scholar 

  6. Merat, A., and Dickerson, J.W.T. (1974)Biol. Neonate 25, 158–170.

    Article  PubMed  CAS  Google Scholar 

  7. Tyzbir, R.S., and Dain, J.A. (1972)Adv. Exptl. Med. Biol. 19, 571–579.

    CAS  Google Scholar 

  8. Karlsson, I., and Svennerholm, L. (1978)J. Neurochem. 31, 657–662.

    Article  PubMed  CAS  Google Scholar 

  9. Bieri, J.G., Stoewsand, G.S., Briggs, G.M., Phillips, R.W., Woodard, J.G., and Knapka, J.J. (1977)J. Nutr. 107, 1340–1348.

    CAS  Google Scholar 

  10. Schneider, W.C. (1957) inMethods in Enzymology (Colowick S.P., and Kaplan, N.O., eds.) Vol. III, pp. 680–684, Academic Press, New York.

    Google Scholar 

  11. Burton, K. (1956)J. Biol. Chem. 62, 315–323.

    CAS  Google Scholar 

  12. Prasad, V.V.T.S. (1989)Neurochem. Res. 14, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, I.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  14. Seyfried, T.N., Glaser, G.H., and Yu, R.K. (1978)J. Neurochem. 31, 21–27.

    PubMed  CAS  Google Scholar 

  15. Warren, L. (1959)J. Biol. Chem. 234, 1971–1975.

    PubMed  CAS  Google Scholar 

  16. Skoza, L., and Mohos, S. (1976)Biochem. J. 159, 457–462.

    PubMed  CAS  Google Scholar 

  17. Colton, T. (1974) inStatistics in Medicine, pp. 99–150, Little Brown and Company, Boston, New York.

    Google Scholar 

  18. Warman, N.L., and Rasmussen, K.M. (1983)Nutr. Res. 3, 527–545.

    Article  Google Scholar 

  19. Butte, N.F., Garza, C., Stuff, J.E., Smith, E., and Nicholos, B.L. (1984)Am. J. Clin. Nutr. 39, 296–306.

    PubMed  CAS  Google Scholar 

  20. Cragg, B.C. (1972)Brain 95, 143–150.

    PubMed  CAS  Google Scholar 

  21. Bass, N.H., Netsky, M.G., and Young, E. (1970)Arch. Neurol. 23, 289–302.

    PubMed  CAS  Google Scholar 

  22. Dickerson, J.W.T. (1980) inFood and Health Science and Technology (Birth, G.G., and Parker, K.J., eds.), pp. 487–500, Applied Science Publishers, London.

    Google Scholar 

  23. Geison, R.L., and Waisman, H.A. (1970)J. Nutr. 100, 315–324.

    PubMed  CAS  Google Scholar 

  24. Bhargava, P., Rao, P.S., Vajreshwari, A., and Shankar, R. (1984)Lipids 19, 179–186.

    Article  PubMed  CAS  Google Scholar 

  25. Krigman, M.R., and Hogan, E.L. (1976)Brain Res. 107, 239–255.

    Article  PubMed  CAS  Google Scholar 

  26. Vaswani, K.K., and Sharma, M. (1985)J. Vit. Nutr. Res. 55, 323–329.

    CAS  Google Scholar 

  27. Geel, S.E., and Dreyfus, P.M. (1975)J. Neurochem. 24, 353–360.

    Article  PubMed  CAS  Google Scholar 

  28. Dickerson, J.W.T., Merat, A., and Yusuf, H.K.M. (1982) inBrain and Behavioral Development (Dickerson, J.W.T., and McGurk, H., eds.) pp. 73–108, Surry University Press, Guildford.

    Google Scholar 

  29. Wiggins, R.C., Miller, S.L., Benjamins, J.A., Krigman, M.R., and Morell, P. (1976)Brain Res. 108, 257–273.

    Article  Google Scholar 

  30. Adlard, B.P.F., and Dobbing, J. (1972)Pediat. Res. 6, 38–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Prasad, V.V.T.S. Maternal protein deficiency in rat: Effects on central nervous system gangliosides and their catabolizing enzymes in the offspring. Lipids 26, 553–556 (1991). https://doi.org/10.1007/BF02536603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536603

Keywords

Navigation