Skip to main content

Role of Gangliosides in Neurological Development and the Influence of Dietary Sources

  • Chapter
  • First Online:
Nutrition in Infancy

Part of the book series: Nutrition and Health ((NH))

Abstract

Gangliosides are a wide family of glycosphingolipids that contain one or more sialic-acid residues. They were first extracted from brain “Ganglionzellen” (ganglions or neurons), hence the name, but occur in most animal tissues and fluids including blood, amniotic fluid and milk [1–3]. The profile and the concentration of gangliosides depend on the organ, sub-region of the organ, tissue or fluid as well as on the stage of cellular development and the age of the organism. Although gangliosides are present in all vertebrate cells, they are in unusually high concentration in the cells of the nervous system which, along with their spatial and temporal patterns of distribution, has led to the suggestion that they have a special role during neurological development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klenk E. Uber die Ganglioside, eine neue Gruppe von zukkerhaltigen Gehirnlipoiden. Z Physiol Chem. 1942;273:76–86.

    Article  CAS  Google Scholar 

  2. Wiegandt H. Gangliosides. In: Wiegandt H, editor. Glycolipids. Amsterdam: Elsevier; 1985. p. 101–98.

    Google Scholar 

  3. Rueda R, Gil A. Role of gangliosides in infant nutrition. In: Huang YS, Sinclair AJ, editors. Lipids in Infant Nutrition. Champaign, IL: AOCS; 1998. p. 213–34.

    Google Scholar 

  4. IUPAC (Moss GP). Nomenclature of glycolipids (recommendations 1997). http://www.chem.qmul.ac.uk/iupac/misc/glylp.html. Accessed September 19, 2011.

  5. Svennerholm L. Chromatographic separation of human brain gangliosides. J Neurochem. 1963;10:613–23.

    Article  PubMed  CAS  Google Scholar 

  6. Tangvoranuntakul P, Gagneux P, Diaz S, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A. 2003;100:12045–50.

    Article  PubMed  CAS  Google Scholar 

  7. Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem. 1988;50:1825–9.

    Article  PubMed  CAS  Google Scholar 

  8. Svennerholm L, Boström K, Fredman P, Månsson JE, Rosengren B, Rynmark BM. Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta. 1989;1005:109–17.

    Article  PubMed  CAS  Google Scholar 

  9. Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosović C, Lauc G. Human brain gangliosides in development, aging and disease. Int J Dev Biol. 1991;35:289–95.

    PubMed  CAS  Google Scholar 

  10. Walkley SU. Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B. 2003;358(1433):893–904.

    Article  CAS  Google Scholar 

  11. Blum AS, Barnstable CJ. O-acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neural development. Proc Natl Acad Sci U S A. 1987;84:8716–20.

    Article  PubMed  CAS  Google Scholar 

  12. Mendez-Otero R, Schlosshauer B, Barnstable CJ, Constantine-Paton M. A developmentally regulated antigen associated with neural cell and process migration. J Neurosci. 1988;8:564–79.

    PubMed  CAS  Google Scholar 

  13. Mendez-Otero R, Friedman JE. Role of acetylated gangliosides on neurite extension. Eur J Cell Biol. 1996;71:192–8.

    PubMed  CAS  Google Scholar 

  14. Mendez-Otero R, Cavalcante LA. Expression of 9-O-acetylated gangliosides is correlated with tangential cell migration in the rat brain. Neurosci Lett. 1996;204:97–100.

    Article  PubMed  CAS  Google Scholar 

  15. Cammer W, Zhang H. Ganglioside GD3 in radial glia and astrocytes in situ in brains of young and adult mice. J Neurosci Res. 1996;46:18–23.

    Article  PubMed  CAS  Google Scholar 

  16. Stojiljković M, Blagojević T, Vukosavić S, et al. Ganglioside GM1 and GM3 in early human brain development: an immunocytochemical study. Int J Dev Neurosci. 1996;14:35–44.

    Article  PubMed  Google Scholar 

  17. Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK. Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology. 2010;20:78–86.

    Article  PubMed  CAS  Google Scholar 

  18. Roisen FJ, Bartfeld H, Nagele R, Yorke G. Ganglioside stimulation of axonal sprouting in vitro. Science. 1981;214(4520):577–8.

    Article  PubMed  CAS  Google Scholar 

  19. Singleton DW, Lu CL, Roisen FJ. Promotion of neurite outgrowth by protein kinase inhibitors and ganglioside GM1 in neuroblastoma cells involves MAP kinase ERK ½. Int J Dev Neurosci. 2000;18:797–805.

    Article  PubMed  CAS  Google Scholar 

  20. Vyas AA, Patel HV, Fromholt SE, et al. Gangliosides are functional nerve cell ligands for myelin-associated ­glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A. 2002;99:8412–7.

    Article  PubMed  CAS  Google Scholar 

  21. Mendez-Otero R, Constantine-Paton M. Granule cell induction of 9-O-acetyl gangliosides on cerebellar glia in microcultures. Dev Biol. 1990;138:400–9.

    Article  PubMed  CAS  Google Scholar 

  22. Santiago MF, Berredo-Pinho M, Costa MR, Gandra M, Cavalcante LA, Mendez-Otero R. Expression and function of ganglioside 9-O-acetyl GD3 in postmitotic granule cell development. Mol Cell Neurosci. 2001;17:488–99.

    Article  PubMed  CAS  Google Scholar 

  23. Santiago MF, Costa MR, Mendez-Otero R. Immunoblockage of 9-O-acetyl GD3 ganglioside arrests the in vivo migration of cerebellar granule neurons. J Neurosci. 2004;24:474–8.

    Article  PubMed  CAS  Google Scholar 

  24. Santiago MF, Liour SS, Mendez-Otero R, Yu RK. Glial-guided neuronal migration in P19 embryonal carcinoma stem cell aggregates. J Neurosci Res. 2005;81:9–20.

    Article  PubMed  CAS  Google Scholar 

  25. Mizutani A, Kuroda Y, Muramoto K, Kobayashi K, Yamagishi K, Inokuchi J. Effects of glucosylceramide synthase inhibitor and ganglioside GQ1b on synchronous oscillations of intracellular Ca2+ in cultured cortical neurons. Biochem Biophys Res Commun. 1996;222:494–8.

    Article  PubMed  CAS  Google Scholar 

  26. Fujii S, Igarashi K, Sasaki H, et al. Effects of the mono- and tetrasialogangliosides GM1 and GQ1b on ­ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology. 2002;12:339–44.

    Article  PubMed  CAS  Google Scholar 

  27. Ikarashi K, Fujiwara H, Yamazaki Y, et al. Impaired hippocampal long-term potentiation and failure of learning in {beta}1,4-N-acetylgalactosaminyltransferase gene transgenic mice. Glycobiology. 2011;21:1373–81.

    Article  PubMed  CAS  Google Scholar 

  28. Miljan EA, Meuillet EJ, Mania-Farnell B, et al. Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem. 2002;277:10108–13.

    Article  PubMed  CAS  Google Scholar 

  29. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A. 1995;92:5087–91.

    Article  PubMed  CAS  Google Scholar 

  30. Lim ST, Esfahani K, Avdoshina V, Mocchetti I. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology. 2011;60:1160–7.

    Article  PubMed  CAS  Google Scholar 

  31. Huang F, Dong X, Zhang L, et al. The neuroprotective effects of NGF combined with GM1 on injured spinal cord neurons in vitro. Brain Res Bull. 2009;79:85–8.

    Article  PubMed  CAS  Google Scholar 

  32. Malisan F, Franchi L, Tomassini B, et al. Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med. 2002;196:1535–41.

    Article  PubMed  CAS  Google Scholar 

  33. Jennemann R, Sandhoff R, Wang S, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci U S A. 2005;102:12459–64.

    Article  PubMed  CAS  Google Scholar 

  34. Yamashita T, Wu YP, Sandhoff R, et al. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci U S A. 2005;102:2725–30.

    Article  PubMed  CAS  Google Scholar 

  35. Takamiya K, Yamamoto A, Furukawa K, et al. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A. 1996;93:10662–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sheikh KA, Sun J, Liu Y, et al. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A. 1999;96:7532–7.

    Article  PubMed  CAS  Google Scholar 

  37. Okada M, Itoh Mi M, Haraguchi M, et al. b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem. 2002;277:1633–6.

    Article  PubMed  CAS  Google Scholar 

  38. Handa Y, Ozaki N, Honda T, et al. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain. 2005;117:271–9.

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa M, Liour SS, Yu RK. Involvement of gangliosides in proliferation of immortalized neural progenitor cells. J Neurochem. 2004;91:804–12.

    Article  PubMed  CAS  Google Scholar 

  40. Kuan CY, Roth KA, Flavell RA, Rakic P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 2000;23:291–7.

    Article  PubMed  CAS  Google Scholar 

  41. Nakatsuji Y, Miller RH. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol. 2001;168:290–9.

    Article  PubMed  CAS  Google Scholar 

  42. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab. 2008;94:391–6.

    Article  PubMed  CAS  Google Scholar 

  43. Maglione V, Marchi P, Di Pardo A, et al. Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J Neurosci. 2010;30:4072–80.

    Article  PubMed  CAS  Google Scholar 

  44. Jeyakumar M, Butters TD, Dwek RA, Platt FM. Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol. 2002;28:343–57.

    Article  PubMed  CAS  Google Scholar 

  45. Kawashima N, Tsuji D, Okuda T, Itoh K, Nakayama K. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis. J Neurochem. 2009;111:1031–41.

    Article  PubMed  CAS  Google Scholar 

  46. Kawashita E, Tsuji D, Kawashima N, Nakayama K, Matsuno H, Itoh K. Abnormal production of macrophage inflammatory protein-1alpha by microglial cell lines derived from neonatal brains of Sandhoff disease model mice. J Neurochem. 2009;109:1215–24.

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Wu YP, Wada R, et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet. 2000;9:1087–92.

    Article  PubMed  CAS  Google Scholar 

  48. Zervas M, Somers KL, Thrall MA, Walkley SU. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol. 2001;11:1283–7.

    Article  PubMed  CAS  Google Scholar 

  49. Simpson MA, Cross H, Proukakis C, et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 2004;36:1225–9.

    Article  PubMed  CAS  Google Scholar 

  50. Wu G, Lu ZH, Wang J, et al. Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci. 2005;25:11014–22.

    Article  PubMed  CAS  Google Scholar 

  51. Kawai H, Allende ML, Wada R, et al. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem. 2001;276:6885–8.

    Article  PubMed  CAS  Google Scholar 

  52. Izumi T, Ogawa T, Koizumi H, Fukuyama Y. Low levels of CSF gangliotetraose-series gangliosides in West syndrome: implication of brain maturation disturbance. Pediatr Neurol. 1993;9:293–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sorensen LK. A liquid chromatography/tandem mass spectrometric approach for the determination of gangliosides GD3 and GM3 in bovine milk and infant formulae. Rapid Commun Mass Spectrom. 2006;20:3625–33.

    Article  PubMed  Google Scholar 

  54. Fong B, et al. Liquid chromatography-high-resolution mass spectrometry for quantitative analysis of gangliosides. Lipids. 2009;44(9):867–74.

    Article  PubMed  CAS  Google Scholar 

  55. Lucas A, Morley R, Cole TJ. Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ. 1998;317:1481–7.

    Article  PubMed  CAS  Google Scholar 

  56. Isaacs EB, Firshl BR, Quinn BT, et al. Impact of breast milk on IQ, brain size and white matter development. Pediatr Res. 2010;67:357–62.

    Article  PubMed  Google Scholar 

  57. Vanier MT, Holm M, Ohman R, Svennerholm L. Developmental profiles of gangliosides in human and rat brain. J Neurochem. 1971;18:581–92.

    Article  PubMed  CAS  Google Scholar 

  58. Kracun I, Rosner H, Drnovsek V, et al. Gangliosides in the human brain development and aging. Neurochem Int. 1992;20:421–31.

    Article  PubMed  CAS  Google Scholar 

  59. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. 2003;78:1024–9.

    PubMed  CAS  Google Scholar 

  60. Rahman H. Brain gangliosides and memory formation. Behav Brain Res. 1995;66:105–16.

    Article  Google Scholar 

  61. Crichton GE, Elias MF, Dore GA, Robbins MA. Relation between dairy food intake and cognitive function: the Maine-Syracuse Longitudinal Study. Int Dairy J. 2012;22:15–23. doi:10.1016/j.idairyj.2011.08.001.

    Google Scholar 

  62. Idota T, Kawakami H. Inhibitory effects of milk gangliosides on the adhesion of Escherichia coli to human carcinoma cells. Biosci Biotechnol Biochem. 1995;59:69–72.

    Article  PubMed  CAS  Google Scholar 

  63. Nakano T, Sugawara M, Kawakami H. Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan. 2001;42:11–7.

    PubMed  CAS  Google Scholar 

  64. Lacomba R, Salcedo J, Alegriá A, et al. Effect of simulated gastrointestinal digestion on sialic acid and gangliosides present in human milk and infant formulas. J Agric Food Chem. 2011;59:5755–62.

    Article  PubMed  CAS  Google Scholar 

  65. Park EJ, Suh M, Ramanujam K, Steiner K, Begg D, Clandinin MT. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J Pediatr Gastroenterol Nutr. 2005;40:487–95.

    Article  PubMed  CAS  Google Scholar 

  66. Park EJ, Thomson ABR, Clandinin MT. Dietary ganglioside protects the degradation of occludin tight junction protein in acute intestinal inflammation by decreasing nitric oxide and increasing interleukin 10 production in the rat. J Pediatr Gastroenterol Nutr. 2007;44:119.

    Article  Google Scholar 

  67. Gurnida D, Fong B, McJarrow P, Rowan A, Norris C. Poster presented at: World Dairy Summit. New Zealand: Auckland; 2010.

    Google Scholar 

  68. Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition. Eur J Clin Nutr. 2003;57:1351–69.

    Article  PubMed  CAS  Google Scholar 

  69. Mitchell MD, Henare K, Lowe E, Naylor M, Fong B, McJarrow P. Transfer of gangliosides across the human placenta. Early Hum Dev. 2012;33:312–6.

    Article  Google Scholar 

  70. Hungund BL, Morishima HO, Gokhale VS, Cooper TB. Placental transfer of (3H)-GM1 and its distribution to maternal and fetal tissues of the rat. Life Sci. 1993;53:113–9.

    Article  PubMed  CAS  Google Scholar 

  71. Pan XL, Izumi T. Variation of the ganglioside compositions of human milk, cow’s milk and infant formulas. Early Hum Dev. 2000;57:25–31.

    Article  PubMed  CAS  Google Scholar 

  72. Abraham RR, Abraham RM, Wynn V. A double blind placebo controlled trial of mixed gangliosides in diabetic peripheral and autonomic neuropathy. Adv Exp Med Biol. 1984;174:607–24.

    Article  PubMed  CAS  Google Scholar 

  73. Bradley WG. Double-blind controlled trial of purified brain gangliosides in amyotrophic lateral sclerosis and experience with peripheral neuropathies. Adv Exp Med Biol. 1984;174:565–73.

    Article  PubMed  CAS  Google Scholar 

  74. Mei ZT, Zheng J-Z. Effects of exogenous gangliosides on learning and memory in rats. Jpn J Physiol. 1993;43 suppl 1:S295–9.

    PubMed  CAS  Google Scholar 

  75. Fighera MR, Royes LFF, Furian AF, et al. GM1 ganglioside prevents seizures, Na+, K+-ATPase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole. Neurobiol Dis. 2006;22:611–23.

    Article  PubMed  CAS  Google Scholar 

  76. Park EJ, Suh M, Clandinin MT. Dietary ganglioside and long-chain polyunsaturated fatty acids increase ganglioside GD3 content and alter the phospholipid profile in neonatal rat retina. Invest Ophthalmol Vis Sci. 2005;46:2571–5.

    Article  PubMed  Google Scholar 

  77. Gustavsson M, Hodgkinson SC, Fong B, et al. Maternal supplementation with a complex milk lipid mixture during pregnancy and lactation alters neonatal brain lipid composition but lacks effect on cognitive function in rats. Nutr Res. 2010;30:279–89.

    Article  PubMed  CAS  Google Scholar 

  78. Vickers MH, Guan J, Gustavsson M, et al. Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and recognition. Nutr Res. 2009;29:426–35.

    Article  PubMed  CAS  Google Scholar 

  79. Xu X-Z, Zhu T-C. Effect of ganglioside in repairing the neurological function of children with cerebral palsy: analysis of the curative efficacy in 2230 cases. Chin J Clin Rehab. 2005;9:122–3 [in Chinese].

    CAS  Google Scholar 

  80. Schneider JS, Sendek S, Daskalakis C, Cambi F. GM1 ganglioside in Parkinson’s disease: results of a five year open study. J Neurol Sci. 2010;292:45–51.

    Article  PubMed  CAS  Google Scholar 

  81. Wu C-Y, Bai L, Wang W-L, et al. Neurobehavior effect of GM-1 on LBW infants. Hei Long Jiang Med J. 2010;34:410–2.

    Google Scholar 

  82. Gurnida et al. Association of complex lipids containing gangliosides with cognitive development in 6-month-old infants. Early Hum Dev. 2012;88:595–601.

    Google Scholar 

  83. Moore HM, Ettinger AC, Yokoyama MT. Variation in ganglioside content of bovine dairy products. J Food Compost Anal. 2000;13:783–90.

    Article  CAS  Google Scholar 

  84. Pham PH, Duffy LT, Dymtrash AL, Lien VW, Thomson AB, Clandinin MT. Estimate of dietary ganglioside intake in a group of healthy Edmontonians based on selected foods. J F Comp Anal. 2011;24:1032–7.

    Article  CAS  Google Scholar 

  85. Li S-C, Chien J-L, Wan CC, Li Y-T. Occurence of glycosphingolipids in chicken egg yolk. Biochem J. 1978; 173:697–99.

    Article  CAS  Google Scholar 

  86. Shiraishi T, Uda Y. Characterization of neutral sphingolipids and gangliosides from chicken liver. J Biochem. 1986; 100:553–61.

    Article  CAS  Google Scholar 

  87. Fong B, Norris C, McJarrow P. Liquid chromatography-high-resolution electrostatic ion-trap mass spectrometry analysis of GD(3) ganglioside in dairy products. Int Dairy J. 2011;21:42–7.

    Article  CAS  Google Scholar 

  88. Sanchez-Diaz A, Ruano M-J, Lorente F, Hueso P. A critical analysis of total sialic acid and sialoglycoconjugate contents of bovine milk-based infant formulas. JPGN. 1997;24:405–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. McJarrow Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendez-Otero, R., Pimentel-Coelho, P.M., Ukraintsev, S., McJarrow, P. (2013). Role of Gangliosides in Neurological Development and the Influence of Dietary Sources. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-254-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-254-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-253-7

  • Online ISBN: 978-1-62703-254-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics