Skip to main content
Log in

Dietary ω3 fatty acids and cholesterol modify enterocyte microsomal membrane phospholipids, cholesterol content and phospholipid enzyme activities in diabetic rats

  • Article
  • Published:
Lipids

Abstract

Diabetes-associated changes in intestinal uptake of nutrients are modified by isocaloric variations in the type of dietary lipids, and are associated with alterations in the phospholipid and fatty acyl content of the intestinal brush border membrane. The present study was designed to test the hypothesis that diet- and diabetes-associated changes in enterocyte microsomal membrane phospholipids are due to variations in the activity of two phospholipid metabolizing enzymes, 1,2-diacylglycerol: CDP choline cholinephosphotransferase (CPT) and phosphatidylethanolamine methyltransferase (PEMT). Adult female Wistar rats were fed one of four semisynthetic diets—beef tallow low in cholesterol (BT), beef tallow high in cholesterol (BTC), fish oil low in cholesterol (FO) or fish oil high in cholesterol. In half of the animals, diabetes mellitus was produced by injection of streptozotocin. Jejunal and ileal enterocyte microsomes (EMM) were isolated and analyzed for cholesterol and phospholipids, as well as for CPT and PEMT activities. In control animals, feeding FO reduced EMM total phospholipids including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol. Feeding FO resulted in a greater than 95% reduction in the activity of CPT. Diabetes was associated with increased jejunal EMM total phospholipids including sphingomyelin (SM) and PE, without associated changes in CPT or PEMT. Dietary cholesterol supplementation did not effect EMM total cholesterol or phospholipid composition in control rats fed BT or FO, but was associated with an increase in EMM cholesterol in diabetic rats fed BT or FO. A decrease in total phospho-lipids due to a decline in SM, PC and PE in diabetic rats fed FO was not associated with changes in the activities of CPT or PEMT in EMM. Thus (i) enterocyte microsomal membrane cholesterol and phospholipid contents are influenced by diabetes, dietary cholesterol and the type of fatty acid in the diet, and (ii) changes in phospholipid composition are not fully explained by alterations in the activities of CPT and PEMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBM:

brush border membrane

BT:

beef tallow with low cholesterol diet

BTC:

beef tallow with high cholesterol diet

CPT:

1,2-diacylglycerol: CDPcholine cholinephosphotransferase

EMM:

enterocyte microsomal membranes

FO:

fish oil with low cholesterol diet

FOC:

fish oil with high cholesterol diet

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PEMT:

phosphatidylethanolamine methyltransferase

PI:

phosphatidylinositol

SM:

sphingomyelin

References

  1. Crane, R.K. (1961)Biochem. Biophys. Res. Commun. 4, 436–440.

    Article  CAS  PubMed  Google Scholar 

  2. Leese, H.J., and Mansford, R.L. (1970)J. Physiol. 212, 819–838.

    Article  CAS  Google Scholar 

  3. Olsen, W.A., and Rogers, L.H. (1970)J. Clin. Invest. 49, 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schedl, H.P., and Wilson, H.D. (1971)Am. J. Physiol. 220, 1739–1741.

    CAS  PubMed  Google Scholar 

  5. Thomson, A.B.R. (1980)J. Lipid Res. 21, 687–698.

    CAS  PubMed  Google Scholar 

  6. Thomson, A.B.R. (1981)Diabetes 30, 247–255.

    Article  CAS  PubMed  Google Scholar 

  7. Csaky, T.Z., and Fischer, E. (1981)Diabetes 30, 568–574.

    Article  CAS  PubMed  Google Scholar 

  8. Thomson, A.B.R. (1983)Am. J. Physiol. 244, G151-G159.

    CAS  PubMed  Google Scholar 

  9. Thomson, A.B.R., and Rajotte, R.V. (1984)Am. J. Physiol. 246, G627-G633.

    CAS  PubMed  Google Scholar 

  10. Fedorak, R.N., Change, E.B., Madara, J.L., and Field, M. (1987)J. Clin. Invest. 79, 1571–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomson, A.B.R. (1988) inPrinciples and Practice of Gastroenterology and Hepatology (Gitnick, G., ed.) pp. 333–343, Elsevier, New York.

    Google Scholar 

  12. Keelan, M., Walker, K., Rajotte, R.V., Clandinin, M.T., and Thomson, A.B.R. (1987)Can. J. Physiol. Pharmacol. 65, 210–218.

    Article  CAS  PubMed  Google Scholar 

  13. Keelan, M., Walker, K., and Thomson, A.B.R. (1985)Comp. Biochem. Physiol. 82A, 83–89.

    Article  CAS  Google Scholar 

  14. Thomson, A.B.R., Keelan, M., Garg, M.L., and Clandinin, M.T. (1987)Can. J. Physiol. Pharmacol. 65, 2459–2465.

    Article  CAS  PubMed  Google Scholar 

  15. Brasitus, T.A., Dudeja, P.K., Bolt, M.J.G., Sitrin, M.D., and Baum, C. (1989)Biochim. Biophys. Acta 989, 177–186.

    Article  Google Scholar 

  16. Keelan, M., Wierzbicki, A.A., Wierzbicki, E., Thomson, A.B.R., and Clandinin, M.T. (1991)Diabetes Res. 16, 127–138.

    CAS  PubMed  Google Scholar 

  17. Mansbach, C.M. (1976)Enzyme 21, 137–141.

    Article  CAS  PubMed  Google Scholar 

  18. Mansbach, C.M. (1977)J. Clin. Invest. 60, 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Doherty, P.J.A. (1980)Can. J. Biochem. 58, 527–533.

    Article  PubMed  Google Scholar 

  20. Mansbach, C.M., and Arnold, A. (1986)Biochim. Biophys. Acta 875, 516–524.

    Article  CAS  PubMed  Google Scholar 

  21. Mansbach, C.M. (1975)Gastroenterology 68, 708–714.

    CAS  PubMed  Google Scholar 

  22. Hoffman, D.R., Haning, J.A., and Cornatzer, W.E. (1981)Proc. Soc. Exp. Biol. Med. 167, 143–146.

    Article  CAS  PubMed  Google Scholar 

  23. Weinhold, P.A., Skinner, R.S., and Sanders, R.D. (1973)Biochim. Biophys. Acta 326, 43–51.

    Article  CAS  PubMed  Google Scholar 

  24. Dudeja, P.K., and Brasitus, T.A. (1987)Biochim. Biophys. Acta 919, 307–310.

    Article  CAS  PubMed  Google Scholar 

  25. Lindeskog, P., Haaparanta, T., Norgard, M., Glauman, H., Hansson, T., and Gustafsson, J.A. (1986)Arch. Biochem. Biophys. 244, 492–501.

    Article  CAS  PubMed  Google Scholar 

  26. Freedland, R.A., and Harper, A.E. (1957)J. Biol. Chem. 228, 743–751.

    CAS  PubMed  Google Scholar 

  27. Bowyer, D., and King, J. (1977)J. Chromatogr. 143, 473–495.

    Article  CAS  PubMed  Google Scholar 

  28. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    CAS  PubMed  Google Scholar 

  29. Allain, C.C., Poon, L.S., Chan, S.G., Richmond, W., and Fu, P.C. (1974)Clin. Chem. 20, 470–475.

    CAS  PubMed  Google Scholar 

  30. Morin, R.J. (1976)Clin. Chim. Acta 71, 75–80.

    Article  CAS  PubMed  Google Scholar 

  31. Sunderman, R.W., and Sunderman, Jr., R.N. (1960)Lipids and Steroid Hormones in Clinical Medicine, pp. 28–32, J.B. Lippincott Co., Philadelphia.

    Google Scholar 

  32. Vitiello, F., and Zanetta, J.P. (1978)J. Chromatogr. 166, 637–640.

    Article  CAS  PubMed  Google Scholar 

  33. Touchstone, J.C., Chen, J.C., and Beaver, K.M. (1979)Lipids 15, 61–62.

    Article  Google Scholar 

  34. Fonlupt, P., Prey, C., and Pochceo, H. (1981)Biochem. Biophys. Res. Commun. 100, 1720–1726.

    Article  CAS  PubMed  Google Scholar 

  35. Thomson, A.B.R., Keelan, M., Clandinin, M.T., and Walker, K. (1987)Am. J. Physiol. 252, G262-G271.

    CAS  PubMed  Google Scholar 

  36. Thomson, A.B.R., Keelan, M., Clandinin, M.T., Rajotte, R.V., Cheeseman, C.I., and Walker, K. (1987)Biochim. Biophys. Acta 905, 426–434.

    Article  CAS  PubMed  Google Scholar 

  37. Keelan, M., Wierzbicki, A.A., Clandinin, M.T., Walker, K., Rajotte, R.V., and Thomson, A.B.R. (1990)Diabetes Res. 14, 159–164.

    CAS  PubMed  Google Scholar 

  38. Petkova, D.H., Nidolova, M.N., Momchilova-Pankoova, A.B., and Koumanov, K.S. (1990)Comp. Biochem. Physiol. 95, 685–689.

    CAS  Google Scholar 

  39. Thomson, A.B.R., and Rajotte, R.V. (1983)Am. J. Clin. Nutr. 37, 244–252.

    Article  CAS  PubMed  Google Scholar 

  40. Feingold, K.R., Wiley, M.H., MacRae, G., Lear, S.R., Moser, A.H., and Siperstein, M.D. (1982)Diabetes 31, 388–395.

    Article  CAS  PubMed  Google Scholar 

  41. Nakayama, H., and Nakagawa, S. (1977)Diabetes 26, 439–444.

    Article  CAS  PubMed  Google Scholar 

  42. Young, N.L., Sandek, C.D., and Crawford, S.A. (1982)J. Lipid Res. 23, 266–275.

    CAS  PubMed  Google Scholar 

  43. Goodman, M.W., Michels, L.D., and Keane, W.F. (1983)Proc. Soc. Exp. Biol. Med. 170, 286–290.

    Article  Google Scholar 

  44. Feingold, K.R., Wiley, M.H., Moser, A.H., and Lear, S.R. (1983)Diabetes 32, 368–376.

    Article  CAS  PubMed  Google Scholar 

  45. Chautan, M., Termine, E., Amirayan, N., Leonardi, J. Pauli, A.M., Portugal, H., and Lafont, H. (1989)Scand. J. Gastroenterol. 24, 632–640.

    Article  CAS  PubMed  Google Scholar 

  46. Drevon, C.A., Lilljeqvist, A.-C., Schreiner, B., and Norum, K.R. (1979)Atherosclerosis 34, 207–219.

    Article  CAS  PubMed  Google Scholar 

  47. Feingold, K.R., Zsigmond, G., Hughes-Fulford, M., Lear, S.R. and Moser, A.R. (1985)Metabolism 34, 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  48. Lim, P.H., Pritchard, P.H., Paddon, H.B., and Vance, D.E. (1983)Biochim. Biophys. Acta 753, 74–82.

    Article  CAS  PubMed  Google Scholar 

  49. Garg, M.L., Keelan, M., Wierzbicki, A., Thomson, A.B.R., and Clandinin, M.T. (1988)Can. J. Physiol. Pharmacol. 66, 794–800.

    Article  CAS  PubMed  Google Scholar 

  50. Spector, A.A., and Yorek, M.A. (1985)J. Lipid Res. 26, 1015–1035.

    CAS  PubMed  Google Scholar 

  51. Dudeja, P.K., Wali, R.K., Klitzke, A., and Brasitus, T.A. (1990)Am. J. Physiol. 259, G571-G577.

    CAS  PubMed  Google Scholar 

  52. Brasitus, T.A., and Dudeja, P.K. (1985)Arch. Biochem. Biophys. 240, 438–488.

    Article  Google Scholar 

  53. Brenner, R.R. (1981)Prog. Lipid Res. 20, 41–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Keelan, M., Doring, K., Tavernini, M. et al. Dietary ω3 fatty acids and cholesterol modify enterocyte microsomal membrane phospholipids, cholesterol content and phospholipid enzyme activities in diabetic rats. Lipids 29, 851–858 (1994). https://doi.org/10.1007/BF02536253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536253

Keywords

Navigation