Skip to main content
Log in

Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts

  • Article
  • Published:
Lipids

Abstract

To better understand the mode of action of ω3 fatty acids in cell membranes, human foreskin fibroblasts were grown in serum-free medium supplemented with 50 μM oleic acid linoleic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), and the effects on membrane composition, fluorescence polarization and enzyme activities were followed. The cells were enriched with EPA and DHA up to 7 and 13% of total lipids, respectively, of which >95% was associated with phospholipids. In addition, the concentration of 22∶5n−3 increased with both EPA and DHA to 7.5, and 2.1% of the total fatty acids, respectively. When compared to controls (oleic acid), cells treated with DHA showed a decrease in cholesterol, phospholipids, arachidonic acid (AA) and free cholesterol/phospholipid ratio (P<0.05). In the presence of EPA, only decreases in AA and cholesterol were significant (P<0.05). Membrane fluidity, assessed by fluorescence anisotropy, was increased 16% in cells enriched with DHA (P<0.05), but showed no change with EPA or linoleic acid. There was an increase in membrane-associated 5′-nucleotidase (+27%) and adenylate cyclase (+19%) activities (P<0.05), in DHA-enriched, but not in EPA-enriched cells, when compared with oleate controls. The studies show that incorporation of DHA, but not EPA, into cell membranes of fibroblasts alters membrane biophysical characteristics and function. We suggest that these two major n−3 fatty acids of fish oils have differential effects on cell membranes, and this may be related to the known differences in their physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP:

adenosine 5′-phosphate

ATP:

adenosine triphosphate

BSA:

bovine serum albumin

cAMP:

adenosine 3′,5′-monophosphate

DG:

diacylglycerol

DHA:

docosahexaenoic acid

DMEM:

Dulbecco's minimal essential medium

EDTA:

ethylenediaminetetraacetate

EPA:

eicosapentaenoic acid

GLC:

gas-liquid chromatography

LDL:

low density lipoproteins

PBS:

phosphate buffered saline

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

Sph:

sphingomyelin

TLC:

thin-layer chromatography

TMA-DPH:

4′-trimethylammonio-1,6-diphenyl-1,3,5-hexatriene

References

  1. Nordoy, A., and Dyerberg, J. (1989)J. Intern. Med. 225, Suppl 1, 1–3.

    Article  Google Scholar 

  2. Weber, P.C. (1989)J. Intern. Med. 225, Suppl. 1, 61–68.

    Article  Google Scholar 

  3. Harris, W.S. (1989)J. Lipid Res. 30, 785–807.

    CAS  PubMed  Google Scholar 

  4. Kinsella, J.E., Lokesh, B., and Stone, R.A. (1990)Am. J. Clin. Nutr. 52, 1–28.

    Article  CAS  PubMed  Google Scholar 

  5. Kinsella, J.E. (1987Seafoods and Fish Oils in Human Health and Disease, pp. 23–300, Marcel Dekker, New York.

    Google Scholar 

  6. Kobatake, Y., Kuroda, K., Jinnouchi, H., Nishide, E., and Innami, S. (1984)J. Nutr. Sci. Vitaminol (Tokyo) 30, 357–372.

    Article  CAS  Google Scholar 

  7. Childs, M.T., King, I.B., and Knopp, R.H. (1990)Am. J. Clin. Nutr. 52, 632–639.

    Article  CAS  PubMed  Google Scholar 

  8. Subbaiah, P.V., Kaufman, D., and Bagdade, J.D. (1993)Am. J. Clin. Nutr. 58, 360–368.

    Article  CAS  PubMed  Google Scholar 

  9. Murphy, M.G. (1990)J. Nutr. Biochem. 1, 68–79.

    Article  CAS  PubMed  Google Scholar 

  10. Croset, M., Bayon, Y., and Lagarde, M. (1992)Biochem. J. 281, 309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Popp-Snijders, C., Schouten, J.A., van Blitterswijk, W.J., and van der Veen, E.A. (1986)Biochim. Biophys. Acta 864, 31–37.

    Article  Google Scholar 

  12. Stenson, W.F., Seetharam, B., Talkad, V., Pickett, W., Dudeja, P., and Brasitus, T.A. (1989)Biochem. J. 263, 41–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Awad, A.B., Giancola, J.A., Fink, C.S., Horvath, P.J., and Bernadis, L. (1992)J. Nutr. Biochem. 3, 80–86.

    Article  CAS  Google Scholar 

  14. Zuniga, M.E., Lokesh, B.R., and Kinsella, J.E. (1989)J. Nutr. 119, 152–160.

    Article  CAS  PubMed  Google Scholar 

  15. McMurchie, E.J., Patten, G.S., Charnock, J.S., and McLennan, P.L. (1992)J. Nutr. Biochem. 3, 13–22.

    Article  CAS  Google Scholar 

  16. Kubina, M., Lanza, F., Cazenave, J.P., Laustriat, G., and Kuhry, J.G. (1987)Biochim. Biophys. Acta 901, 138–146.

    Article  CAS  PubMed  Google Scholar 

  17. van Blitterswijk, W.J., van Hoeven, R.P., and van der Meer, B.W. (1981)Biochim. Biophys. Acta 644, 323–332.

    Article  PubMed  Google Scholar 

  18. Schachter, D. (1984)Hepatology 4, 140–151.

    Article  CAS  PubMed  Google Scholar 

  19. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  20. Marinetti, G.V. (1962)J. Lipid Res. 3, 1–20.

    CAS  Google Scholar 

  21. Perdue, J., and Sneider, J. (1970)Biochim. Biophys. Acta 196, 125–140.

    Article  CAS  PubMed  Google Scholar 

  22. Lange, Y., and Steck, T.L. (1985)J. Biol. Chem. 260, 15592–15597.

    CAS  PubMed  Google Scholar 

  23. Krishna, G., Weiss, B., and Brodie, B.B. (1968)J. Pharmacol. Exp. Ther. 163, 379–385.

    CAS  PubMed  Google Scholar 

  24. Lowry, O.H., Rosebrough, H.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  25. Cesarone, C.F., Bolognesi, C., and Santi, L. (1979)Anal. Biochem. 100, 188–197.

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovich, A.L., and Ripatti, P.O. (1991)Biochim. Biophys. Acta 1085, 53–62.

    Article  CAS  PubMed  Google Scholar 

  27. Swann, P.G., Parent, C.A., Croset, M., Fonlupt, P., Lagarde, M., Venton, D.L., and Le Breton, G.C. (1990)J. Biol. Chem. 265, 21692–21697.

    CAS  PubMed  Google Scholar 

  28. Wong, S.H., and Marsh, J.B. (1988)Metabolism 37, 1177–1181.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto, K., Yanagita, T., Enomoto, N., and Sakai, T. (1990)Ann. NY Acad. Sci. 598, 523–524.

    Article  Google Scholar 

  30. Stubbs, C.D., Tsang, W.M., Belin, J., Smith, A.D., and Johnson, S.M. (1980)Biochemistry 19, 2756–2762.

    Article  CAS  PubMed  Google Scholar 

  31. Poon, R., Richards, J.M., and Clark, W.R. (1981)Biochim. Biophys. Acta 649, 58–66.

    Article  CAS  PubMed  Google Scholar 

  32. Applegate, K.R., and Glomset, J.A. (1991)J. Lipid Res. 32, 1635–1644.

    CAS  PubMed  Google Scholar 

  33. Daveloose, D., Linard, A., Arfi, T., Viret, J., and Christon, R. (1993)Biochim. Biophys. Acta 116, 229–237.

    Article  Google Scholar 

  34. Houslay, M.D. (1985)Proc. Nutr. Soc. 44, 157–165.

    Article  CAS  PubMed  Google Scholar 

  35. Alam, S.Q., and Alam, B.S. (1986)J. Nutr. 116, 1620–1630.

    Article  CAS  PubMed  Google Scholar 

  36. Bates, E.J., Ferrante, A., Harvey, D.P., Nandoskar, M., and Poulos, A. (1993)J. Leukocyte Biol. 54, 590–598.

    Article  CAS  PubMed  Google Scholar 

  37. Subbaiah, P.V., Liu, M., and Paltauf, F. (1994)Biochemistry, in press.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Brown, E.R., Subbaiah, P.V. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts. Lipids 29, 825–829 (1994). https://doi.org/10.1007/BF02536249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536249

Keywords

Navigation