Skip to main content
Log in

Similarities in surface lipids of chylomicrons from glyceryl and alkyl ester feeding: Major components

  • Article
  • Published:
Lipids

Abstract

This study tests the hypothesis that the rat chylomicrons are assembled and released into lymph similarly regardless of the site (rough or smooth endoplasmic reticulum) or pathway (phosphatidic acid or monoacylglycerol) of triacylglycerol biosynthesis. For this purpose we determined the lipid class, fatty acid and molecular species composition of the choline, ethanolamine, inositol and serine phospholipids of lymph chylomicrons during absorption of menhaden, mustard-seed and corn oil (monoacylglycerol pathway) or the corresponding fatty acid methyl or ethyl esters (phosphatidic acid pathway). The dietary fatty acids were found to be incorporated to various extents into different phospholipid classes, the proportions of which were not affected by the nature of the dietary fat. The chylomicron phospholipids contained 80–82% choline, 8% ethanolamine and 2.5% inositol glycerophospholipids, and much smaller amounts of serine and other minor phospholipids. Administration of a meal of each dietary fat resulted in a retention of approximately 50% endogenous fatty acids in the major glycerophospholipids of the chylomicrons. A minimum of 50% of the molecular species of the choline and ethanolamine glycerophospholipids contained at least one exogenous fatty acid. No significant discrepancies were found in the fatty acid and molecular species composition of the glycerophospholipids between chylomicrons from the oil and corresponding ester feeding. It is concluded that the chylomicrons arising from the monoacylglycerol (oil feeding) and the phosphatidic acid (ester feeding) pathways of triacylglycerol biosynthesis become enveloped in surfactant monolayers containing qualitatively and quantitatively identical classes and molecular species of phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GLC:

gas-liquid chromatography

GPC:

choline glycerophospholipid

GPE:

ethanolamine glycerophospholipid

HDL:

high density lipoprotein

HPLC:

high-performance liquid chromatography

LPC:

lysophosphatidylcholine

LPE:

lysophosphatidylethanolamine

MG:

monoacylglycerol

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

SPH:

sphingomyelin

TMS:

trimethylsilyl

TLC:

thin-layer chromatography

VLDL:

very low density lipoprotein

References

  1. Yang, L.Y., Kuksis, A., and Myher, J.J. (1990)Inform 1, 329.

    Google Scholar 

  2. Clark, B., and Hubscher, G. (1961)Biochim. Biophys. Acta. 46, 479–494.

    Article  PubMed  CAS  Google Scholar 

  3. Clark, B., and Hubscher, G. (1960)Nature 185, 35–37.

    Article  PubMed  CAS  Google Scholar 

  4. Johnston, J.M. (1978) inDisturbances in the Lipid and Lipoprotein Metabolism (Dietschy, J.M., Gotto, A.M. and Ontko, J.A. eds.) pp. 57–68, American Physiological Society, Washington, D.C.

    Google Scholar 

  5. Kuksis, A., and Manganaro, F. (1986) inFat Absorption, (Kuksis, A. ed.) Vol. 2, pp. 233–259, CRC Press, Boca Raton.

    Google Scholar 

  6. Francone, O.L., Kalopissis, A.D., and Griffaton, G. (1989)Biochim. Biophys. Acta 1002, 28–36.

    PubMed  CAS  Google Scholar 

  7. Mansbach, II, C.M., Arnold, A., and Garrett, M. (1987)Am. J. Physiol. 253, G673-G678.

    PubMed  CAS  Google Scholar 

  8. Yang, L.Y., and Kuksis, A. (1987)Biochem. Cell Biol. 65, 514–524.

    PubMed  CAS  Google Scholar 

  9. Yang, L.Y., and Kuksis, A. (1991)J. Lipid Res. 32, 1173–1186.

    PubMed  CAS  Google Scholar 

  10. Yang, L.Y., Kuksis, A., and Myher, J.J. (1990)Biochem. Cell Biol. 68, 480–491.

    Article  PubMed  CAS  Google Scholar 

  11. Myher, J.J., Kuksis, A., Yang, L.Y., and Marai, L. (1987)Biochem. Cell Biol. 65, 811–821.

    PubMed  CAS  Google Scholar 

  12. Skipski, V.P., Peterson, R.F., and Barclay, M. (1964)Biochem. J. 90, 374–378.

    PubMed  CAS  Google Scholar 

  13. Rouser, G., Fleischer, S., and Yamamoto, A. (1970)Lipids 5, 494–496.

    Article  PubMed  CAS  Google Scholar 

  14. Myher, J.J., and Kuksis, A. (1984)Biochim. Biophys. Acta 795, 85–90.

    PubMed  CAS  Google Scholar 

  15. Myher, J.J., Kuksis, A., and Pind, S. (1989)Lipids 24, 396–407.

    Article  PubMed  CAS  Google Scholar 

  16. Myher, J.J., and Kuksis, A. (1982)Can. J. Biochem. 60, 634–650.

    Article  Google Scholar 

  17. Myher, J.J., Kuksis, A., and Yang, L.Y. (1990)Biochem. Cell Biol. 68, 336–344.

    CAS  Google Scholar 

  18. Yang, L.Y., Kuksis, A., and Myher, J.J. (1990)Inform 1, 354.

    Google Scholar 

  19. Myher, J.J., Kuksis, A., and Pind, S. (1990)Inform 1, 332.

    Google Scholar 

  20. Shaikh, N.A., and Kuksis, A. (1982)Can. J. Biochem. 60, 444–451.

    Article  PubMed  CAS  Google Scholar 

  21. Redgrave, R.T. (1971)Aust. J. Exp. Biol. Med. Sci. 49, 209–224.

    PubMed  CAS  Google Scholar 

  22. Nelson, G.J. (1967)Lipids 2, 323–328.

    Article  CAS  PubMed  Google Scholar 

  23. Van Meer, G., (1989)Annu. Rev. Cell Biol. 5, 247–275.

    Article  PubMed  Google Scholar 

  24. Arvidson, G.A.E., and Nilsson, A. (1972)Lipids 5, 344–348.

    Article  Google Scholar 

  25. Patton, G.M., Clark, S.B., Fasulo, J.M., and Robins, S.J. (1984)J. Clin. Invest. 73, 231–240.

    PubMed  CAS  Google Scholar 

  26. Scow, R.R., Stein, Y., and Stein, O. (1967)J. Biol. Chem. 242, 4919–4924.

    PubMed  CAS  Google Scholar 

  27. Parthasarathy, E., Subbiah, P.V., and Ganguly, J. (1974)Biochem. J. 140, 503–508.

    PubMed  CAS  Google Scholar 

  28. Mansbach, II, C.M. (1977)J. Clin. Invest. 60, 411–420.

    Article  PubMed  CAS  Google Scholar 

  29. Patton, G.M., Robins, S.J., Fasulo, J.M., and Clark, S.B. (1985)J. Lipids Res. 26, 1285–1293.

    CAS  Google Scholar 

  30. Higgins, J.A., and Fieldsend, J.K. (1987)J. Lipid Res. 28, 268–278.

    PubMed  CAS  Google Scholar 

  31. Janero, D.R., and Lane, M.D. (1983)J. Biol. Chem. 258, 14496–14504.

    PubMed  CAS  Google Scholar 

  32. Vance, J., and Vance, D.E. (1988)J. Biol. Chem. 263, 5898–5909.

    PubMed  CAS  Google Scholar 

  33. Kawamoto, T., Akino, T., Nakamura, M., and Mori, M. (1980)Biochim. Biophys. Acta 619, 35–47.

    PubMed  CAS  Google Scholar 

  34. Landin, B., and Nilsson, A. (1984)Biochim. Biophys. Acta 793, 105–113.

    PubMed  CAS  Google Scholar 

  35. Vance, J.E., and Vance, D.E. (1986)J. Biol. Chem. 261, 4486–4491.

    PubMed  CAS  Google Scholar 

  36. Yao, Z., and Vance, D.E. (1988)J. Biol. Chem. 263, 2998–3004.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yang, LY., Kuksis, A. & Myher, J.J. Similarities in surface lipids of chylomicrons from glyceryl and alkyl ester feeding: Major components. Lipids 26, 806–818 (1991). https://doi.org/10.1007/BF02536162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536162

Keywords

Navigation