Skip to main content
Log in

The immunosuppressive substance 2-chloro-2-deoxyadenosine modulates lipoprotein metabolism in a murine macrophage cell line (P388 cells)

  • Article
  • Published:
Lipids

Abstract

A recently developed immunosuppressive substance, 2-chloro-2-deoxyadenosine (2-CdA), was reported to inhibit monocyte functions at low concentration. Because macrophages play a key role in the formation of atherosclerotic plaques, it was of interest to study the effect of 2-CdA on cellular lipid metabolism. For this purpose we have used a macrophage cell line (P388) to perform incubation studies in the presence of acetylated low density lipoprotein (Ac-LDL) and 2-CdA. The addition of 2-CdA, in concentrations ranging from 5–20 nM, induced a dose-dependent decrease in cellular cholesterol content and in the amount of extracellular [14C]oleic acid (OA) incorporated into the cholesteryl ester (CE) fraction. The effect was maximized at 20 nM 2-CdA with an 86% reduction in cholesterol esterification compared to controls (P<0.008). To evaluate the mechanism of interaction of 2-CdA with cellular lipid metabolism, deoxycytidine (dCyt) and 3-methoxybenzamide (3-MOB), substances known to antagonize the effect of 2-CdA in different ways, were co-administered with 2-CdA. dCyt, a competitive inhibitor of dCyt kinase, which catalyzes phosphorylation to the active metabolite, antagonized the effects of 20 nM 2-CdA, producing significantly greater incorporation of extracellular [14C]OA into the CE fraction than in the presence of 2-CdA alone (P<0.0086). Co-incubation with 2-CdA and the poly-ADP-ribose synthetase inhibitor 3-MOB, which is known to render cells resistant to 2-CdA toxicity by preventing cellular nicotinamide adenine dinucleotide (NAD)- and adenosine triphosphase-depletion, also reversed the effect of 2-CdA on lipid accumulation. However, incubation of P388 cells with 20 nM 2-CdA did not result in a decrease in cellular NAD content. As 20 nM 2-CdA showed no effect on intracellular cholesterol synthesis based on measurement by 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, the decrease in cellular cholesterol content and in [14C]OA incorporation seems to be primarily due to an interference with Ac-LDL metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACAT:

acyl coenzyme A:cholesterol acyltransferase

Ac-LDL:

acetylated low density lipoprotein

ADP:

adenosine diphosphate

AMP:

adenosine-monophosphate

2-CdA:

2-chloro-2-deoxyadenosine

cdATP:

chlorodeoxy adenosine triphosphate

CE:

cholesteryl ester

dCyt:

deoxycytidine

EDTA:

ethylenediaminetetraacetic acid

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A

LDL:

low density lipoprotein

3-MOB:

3-methoxybenzamide

NAD:

nicotinamide adenine dinucleotide

OA:

oleic acid

References

  1. Gerrity, R.G. (1981)Am. J. Pathol. 103, 181–190.

    PubMed  CAS  Google Scholar 

  2. Gown, A.M., Tsukada, T., and Ross, R. (1986)Am. J. Pathol. 125, 191–207.

    PubMed  CAS  Google Scholar 

  3. Goldstein, J.L., Ho, Y.K., Basu, S.M., and Brown, M.S. (1979)Cell Biol. 76, 333–337.

    CAS  Google Scholar 

  4. Arai, H., Kita, T., Yokode, M., Narumiya, S., and Kawai, C.H. (1989)Biochem. Biophys. Res. Commun. 159, 1375–1382.

    Article  PubMed  CAS  Google Scholar 

  5. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudara, P., and Krieger, M. (1990)Nature 343, 531–535.

    Article  PubMed  CAS  Google Scholar 

  6. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989)N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, M.S., Ho, Y.K., and Goldstein, J.L. (1980)J. Biol. Chem. 255, 9344–9353.

    PubMed  CAS  Google Scholar 

  8. Via, D.P., Plant, A.L., Craig, I.F., Gotto, Jr., A.M., and Smith, L.C. (1985)Biochim. Biophys. Acta 83, 417–428.

    Google Scholar 

  9. Van Lenten, B.J., Fogelman, A.M., Seager, J., Ribi, E., Haberland, M.E., and Edwards, P.A. (1985)J. Immunol. 134, 3718–3721.

    PubMed  Google Scholar 

  10. Fogelman, A.M., Seager, J., Haberland, M.E., Hokom, M., Tanaka, R., and Edwards, P.A. (1982)Proc. Natl. Acad. Sci. USA 79, 922–926.

    Article  PubMed  CAS  Google Scholar 

  11. Via, D.P., Pons, L., Dennison, D.K., Fanslow, A.E., and Bernini, F. (1989)J. Lipid Res. 30, 1515–1529.

    PubMed  CAS  Google Scholar 

  12. Fogelman, A.M., Haberland, M.E., Seager, J., Hokom, M., and Edwards, P.A. (1981)J. Lipid Res. 22, 1131–1141.

    PubMed  CAS  Google Scholar 

  13. Mazzone, T., and Chait, A. (1982)Arteriosclerosis 2, 487–492.

    PubMed  CAS  Google Scholar 

  14. Geng, Y.J., and Hansson, G.K. (1992)J. Clin. Invest. 89, 1322–1330.

    PubMed  CAS  Google Scholar 

  15. Lippy, E., and Clinton, S.T.K. (1993)Curr. Opin. Lipidol. 4, 355–363.

    Article  Google Scholar 

  16. Lopez-Virella, M.F., Klein, R.L., and Stevenson, H.C. (1987)Arteriosclerosis 7, 176–184.

    Google Scholar 

  17. Hirsch, L.J., and Mazzone, T. (1986)J. Clin. Invest. 71, 485–490.

    Google Scholar 

  18. Beutler, E., Piro, L., Saven, A., Kay, A.C., McMillan, R., Longmire, R., Carrera, C.J., Morin, P., and Carson, D.A. (1991)Leukemia and Lymphoma 5, 1–8.

    Google Scholar 

  19. Carson, D.A., Wasson, D.B., and Beutler, E. (1984)Proc. Natl. Acad. Sci. USA 81, 2232–2236.

    Article  PubMed  Google Scholar 

  20. Carrera, C.J., Terai, C.H., Lotz, M., Curd, J.C., Piro, L.D., Beutler, E., and Carson, D.A. (1990)J. Clin. Invest. 86, 1480–1488.

    PubMed  CAS  Google Scholar 

  21. Carson, D.A., Wasson, D.B., Kaye, J., Ullmann, B., Martin, Jr., D.W., Robins, R.K., and Montgomery, J.A. (1980)Proc. Natl. Acad. Sci. USA 77, 6865–6874.

    Article  PubMed  CAS  Google Scholar 

  22. Beutler, E. (1992)Lancet 340, 952–956.

    Article  PubMed  CAS  Google Scholar 

  23. Carson, D.A., Kaye, J., and Seegmiller, J.E. (1977)Proc. Natl. Acad. Sci. USA 74, 5677–5681.

    Article  PubMed  CAS  Google Scholar 

  24. Seto, S.H., Carrera, C.J., Kubota, M., Wasson, B., and Carson, D.A. (1985)J. Clin. Invest. 75, 377–380.

    Article  PubMed  CAS  Google Scholar 

  25. Sims, J.L., Sihorsky, G.W., Catino, D.M., Berger, S.J., and Berger, N.A. (1982)Biochemistry 21, 1813–1821.

    Article  PubMed  CAS  Google Scholar 

  26. Bilgeri, R., Petzer, A., Zilian, U., Geisen, E.H., Haun, M., Braunsteiner, H., and Konwalinka, G. (1992)Exp. Haematol. 21, 432–435.

    Google Scholar 

  27. Patsch, J.R., Sailer, S., Kostner, G., Sandhofer, F., Holasek, A., and Braunsteiner, H. (1974)J. Lipid Res. 15, 356–366.

    PubMed  CAS  Google Scholar 

  28. Basu, S.K., Goldstein, J.L., Anderson, R.G., and Brown, M.S. (1976)Proc. Natl. Acad. Sci. USA 79, 1712–1715.

    Google Scholar 

  29. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, B.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  30. Harwood, H.J., Schneider, M., and Stacpoole, P.W. (1984)J. Lipid Res. 25, 967–983.

    PubMed  CAS  Google Scholar 

  31. Klocker, H., Auer, B., Hirsch-Kauffmann, M., Altann, H., Burtscher, H.S., and Schweiger, M. (1983)EMBO J. 2, 303–307.

    PubMed  CAS  Google Scholar 

  32. Bell, F.P. (1985)Lipids 20, 75–80.

    Article  PubMed  CAS  Google Scholar 

  33. Middleton, B., and Middleton, A. (1992)Biochem. J. 282, 853–861.

    PubMed  CAS  Google Scholar 

  34. Ueda, K. (1985)Ann. Rev. Biochem. 54, 73–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lechleitner, M., Auer, B., Zilian, U. et al. The immunosuppressive substance 2-chloro-2-deoxyadenosine modulates lipoprotein metabolism in a murine macrophage cell line (P388 cells). Lipids 29, 627–633 (1994). https://doi.org/10.1007/BF02536097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536097

Keywords

Navigation