Skip to main content
Log in

Overexpression of aRhizopus delemar lipase gene inEscherichia coli

  • Article
  • Published:
Lipids

Abstract

A cloned complementary deoxyribonucleic acid encoding the precursor polypeptide of an extracellular lipase from the fungusRhizopus delemar was altered by site-directed mutagenesis to generate deoxyribonucleic acid fragments that specifically code for the polypeptides of the proenzyme and the mature form of the lipase. Attempts to produce these polypeptides in enzymatically active form inEscherichia coli revealed toxic effects toward the host. Therefore the polypeptides were expressed as inactive and insoluble forms in the cytoplasm ofE. coli BL21 (DE3) cells using plasmid vector pET11-d. With this tightly regulated high-level expression system, lipase and prolipase polypeptides were produced to estimated levels of up to 21% and 15%, respectively, of total cellular protein. The insoluble polypeptides were solubilized in 8 M urea. Refolding into active forms was achieved by treatment with the redox system cystine/cysteine and dilution. Refolded mature lipase was purified to homogeneity by affinity and ion exchange chromatography. The enzyme had a specific activity comparable to that of lipase from the fungal culture. The quantities of pure enzyme obtained from a 1-L culture ofE. coli exceeded those obtained from the fungal culture by a factor of at least 100. Refolded recombinant prolipase was purified essentially to homogeneity and had a specific activity similar to that of the mature enzyme. Its pH optimum was 7.5, rather than the pH 8 determined for recombinant mature lipase and for the enzyme purified from the fungal culture. Recombinant prolipase retained activity after 15 min incubation at 65°C, while mature lipase retained activity only up to 45°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

cDNA:

compementary deoxyribonucleic acid

CM-Sepharose:

carboxymethyl Sepharose

DNA:

deoxyribonucleic acid

DTT:

diethiothreitol

EDTA:

ethylenediaminetetraacetic acid

IPTG:

isopropyl-β-D-thiogalactopyranoside

OA:

oleic acid

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecylsulfate

U:

units of lipase activity

References

  1. Godtfredsen, S.E. (1990) inMicrobial Enzymes and Biotechnology (Fogarty, W.M., and Kelly, C.T., eds.) pp. 255–274, Elsevier, New York.

    Google Scholar 

  2. Okumura, S., Iwai, M., and Tsujisaka, Y. (1976)Agric. Biol. Chem. 40, 655–660.

    CAS  Google Scholar 

  3. Macrae, A.R. (1983)J. Am. Oil Chem. Soc. 60, 291–294.

    CAS  Google Scholar 

  4. Yagi, T., Nakanishi, T., Yoshizawa, Y., and Fukui, F. (1990)J. Ferment. Bioeng. 69, 23–25.

    Article  CAS  Google Scholar 

  5. Tsujisaka, Y., Okumura, S., and Iwai, M. (1977)Biochim. Biophys. Acta 489, 415–422.

    PubMed  CAS  Google Scholar 

  6. Hayes, D.G., and Gulari, E. (1990)Biotechnol. Bioeng. 35, 793–801.

    Article  CAS  PubMed  Google Scholar 

  7. Holmberg, K., and Osterberg, E. (1988)J. Am. Oil Chem. Soc. 65:1544–1548.

    CAS  Google Scholar 

  8. Haas, M.J., Cichowicz, D.J., and Bailey, D.G. (1992)Lipids 27, 571–576.

    CAS  Google Scholar 

  9. Huge-Jensen, B., Andreasen, F., Christensen, T., Christensen, M., Thim, L., and Boel, E. (1989)Lipids 24, 781–785.

    PubMed  CAS  Google Scholar 

  10. Boel, E., Huge-Jensen, B., Woeldike, H.F., Gormsen, E., Christensen, M., Andreasen, F., and Thim, L. (1991) inLipases: Structure, Mechanism and Genetic Engineering (Alberghina, L., Schmid, R.D., and Verger, R., eds.) pp. 207–219, VCH Publishers, Weinheim.

    Google Scholar 

  11. Chung, G.H., Lee, Y.P., Yoo, O.J., and Rhee, J.S. (1991)Appl. Microbiol. Biotechnol. 35, 237–241.

    Article  CAS  Google Scholar 

  12. Haas, M.J., Allen, J., and Berka, T.R. (1991)Gene 109, 107–113.

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989)Molecular Cloning, 2nd edn., pp. 1.25–1.30, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  14. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989)Molecular Cloning, 2nd edn., pp. 1.82–1.84, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  15. Norrander, J., Kempe, T., and Messing, J. (1983)Gene 26, 101–106.

    Article  PubMed  CAS  Google Scholar 

  16. Kunkel, T.A. (1985)Proc. Natl. Acad. Sci. USA 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

  17. Andersson, S.G.E., and Kurland, C.G. (1990)Microbiol. Rev. 54, 198–210.

    PubMed  CAS  Google Scholar 

  18. Studier, W.F., Rosenberg, A.H., Dunn, J.J., and Dubendorff J.W. (1990)Methods Enzymol. 185, 60–89.

    PubMed  CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989)Molecular Cloning, 2nd edn., pp. A.1-A.3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  20. Laemmli, U.K. (1970)Nature (London) 277, 680–685.

    Article  Google Scholar 

  21. Bradford, M.M. (1976)Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  22. Kouker, G., and Jaeger, K.-E. (1987)Appl. Environ. Microbiol. 53, 211–213.

    PubMed  CAS  Google Scholar 

  23. Hanna, Z., Fregeau, C., Prefontaine, G., and Brousseau, R. (1984)Gene 30, 247–250.

    Article  PubMed  CAS  Google Scholar 

  24. Rimm, D.L., and Pollard, T.D. (1989)Gene 75, 323–327.

    Article  PubMed  CAS  Google Scholar 

  25. Deng, T., Noel, J.P., and Tsai, M.-D. (1990)Gene 93, 229–234.

    Article  PubMed  CAS  Google Scholar 

  26. Kapralek, F., Jecmen, P., Sedlacek, J., Fabry, M., and Zadrazil, S. (1991)Biotechnol. Bioeng. 37, 71–79.

    Article  CAS  PubMed  Google Scholar 

  27. Neubauer, P., Hofmann, K., Holst, O., Mattiasson, B., and Kruschke, P. (1992)Appl. Microbiol. Biotechnol. 36, 739–744.

    Article  PubMed  CAS  Google Scholar 

  28. Wilkinson, D.L., and Harrison, R.G. (1991)Bio/Technol. 9, 443–448.

    Article  CAS  Google Scholar 

  29. Mitraki, A., and King, J. (1989)Bio/Technol. 7, 690–697.

    Article  CAS  Google Scholar 

  30. Boel, E., Huge-Jensen, B., Christensen, M., Thim, L., and Fiil, N.P. (1988)Lipids 23, 701–706.

    Article  PubMed  CAS  Google Scholar 

  31. Brzozowski, A.M., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Hensen, B., Patkar, S.A., and Thim, L. (1991)Nature (London) 351, 491–494.

    Article  CAS  Google Scholar 

  32. Cohen, S., White, M.D., Marcus, D., Shalita, Z., Katzir, N., Leitner, M., Grosfeld, H., Sery, T., Friedman, G., Papier, Y., Gabison, D., Helfer, M., Reuveny, S., Velan, B., and Shafferman, A. (1991) inBiologicals from Recombinant Microorganisms and Animals Cells (White, M.D., Reuveny, S., and Shafferman, A., eds.) pp. 349–359. VCH Publishers, Weinheim.

    Google Scholar 

  33. Kohno, T., Carmichael, D.F., Sommer, A., and Thompson, R.C. (1990)Methods Enzymol. 185, 187–195.

    Article  PubMed  CAS  Google Scholar 

  34. Mendoza, J.A., Rogers, E., Lorimer, G.H., and Horowitz, P.M. (1991)J. Biol. Chem. 266, 13587–13591.

    PubMed  CAS  Google Scholar 

  35. Baker, D., Sohl, J.L., and Agard, D.A. (1992)Nature (London) 356, 263–265.

    Article  CAS  Google Scholar 

  36. Pieterson, W.A., Vidal, J.C., Volwerk, J.J., and de Haas, G.H. (1974)Biochemistry 13, 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu, X., Ohta, Y., Jordan, F., and Inouye, M. (1989)Nature (London) 339, 483–484.

    Article  CAS  Google Scholar 

  38. Baker, D., Silen, J.L., and Agard, D.A. (1992)Proteins 12, 339–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mention of brand or firm names does not constitute an endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.

About this article

Cite this article

Joerger, R.D., Haas, M.J. Overexpression of aRhizopus delemar lipase gene inEscherichia coli . Lipids 28, 81–88 (1993). https://doi.org/10.1007/BF02535769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535769

Keywords

Navigation