Skip to main content
Log in

Effect of magnesium deficiency on Δ6 desaturase activity and fatty acid composition of rat liver microsomes

  • Published:
Lipids

Abstract

Experimental Mg2+ deficiency was induced in a group of rats by feeding them a Mg2+-deficient diet for 23 days. They were pair-fed to compare with a control group of rats fed a Mg2+-sufficient diet. In the Mg2+-deficient group the plasma total cholesterol and triglyceride levels were increased while HDL-cholesterol was decreased. In the Mg2+-deficient group the plasma level of thiobarbituric acid reacting substances (TBARS) used as a measure for lipid peroxidation was increased. The increase was attributed to the increased cytosolic Ca2+ in Mg2+-deficiency which can cause: 1) increase of hydro and endoperoxide levels as a consequence of the increase of arachidonic acid release and eicosanoid synthesis in Mg2+-deficiency, and 2) inhibition of the mitochondrial respiratory activity and activation of Ca2+-dependent proteases which may activate the conversion of xanthine dehydrogenase to xanthine oxidase which generates active O2 species. In the Mg2+-deficient group, the fatty acid composition of the liver microsomes indicated a slower rate of conversion of linoleic acid to arachidonic acid which was consistent with the decrease of Δ6 desaturase activity in liver microsomes of Mg2+-deficient rats as measuredin vitro. The decrease of Δ6 desaturase activity was attributed to the lower concentration of actual enzyme molecules as a result of the decreased rate of protein synthesis in Mg2+-deficiency. The possible effects of the increased catecholamine release in Mg2+-deficiency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

COA:

coenzyme A

FFA:

free fatty acid

HDL:

high density lipoprotein

HCl:

hydrochloric acid

LCAT:

lecithin cholesterol acyltransferase activity

LDL:

low density lipoprotein

MDA:

malondialdehyde

NADH:

nicotinamide adenine dinucleotide

TBARS:

thiobarbituric acid reacting substances

TBA:

thiobarbituric acid

VLDL:

very low density protein

References

  1. Rayssiguier, Y. (1985) New Data on Magnesium and Lipids Interrelationships in Pathogenesis of Vascular Diseases in Magnesium Deficiency: Physiopathology and Treatment Implications (Halpern, M.J., Durlach, J. eds.) pp. 122–131, Krager, New York.

    Google Scholar 

  2. Rayssiguier, Y., Gueux, E., Cardot, P., Thomas, G., Robert, A., and Trugnan, G. (1986)Nutr. Res. 6, 233–240.

    Article  CAS  Google Scholar 

  3. Roselle, N., and Donker, K. (1959)Path. Bact. 7, 17–18, 1835–1847.

    Google Scholar 

  4. Galland, L. (1985)Magnesium 4, 333–338.

    PubMed  CAS  Google Scholar 

  5. Spector, A., and Yorek, M. (1985)J. Lipid Res. 26, 1015–1035.

    PubMed  CAS  Google Scholar 

  6. Allain, C.A., Poon, L.S., Chan, C.S.G., and Richmond, W., Fu, P.C. (1974)Clin. Chem. 20, 470–475.

    PubMed  CAS  Google Scholar 

  7. Warnick, G.R., Benderson, J., and Albers, J.J. (1982)Clin. Chem. 28, 1379–1388.

    PubMed  CAS  Google Scholar 

  8. Bucolo, G., and David, H. (1973)Clin. Chem. 19, 476–482.

    PubMed  CAS  Google Scholar 

  9. Yagi, K. (1984)Methods Enzymol. 105, 328–333.

    Article  PubMed  CAS  Google Scholar 

  10. Inkpen, C.A., Arris, R.A., and Quakenbush, F.W. (1969)J. Lipid Res. 10, 277–282.

    PubMed  CAS  Google Scholar 

  11. Mahfouz, M., and Holman, R.T. (1980)Lipids 15, 63–65.

    Article  CAS  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, A.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Mahfouz, M., Johnson, S., and Holman, R.T. (1980)Lipids 15, 100–107.

    Article  PubMed  CAS  Google Scholar 

  14. Hill, E.G., Johnson, S., and Holman, R.T. (1979)J. Nutr. 109, 1759–1765.

    PubMed  CAS  Google Scholar 

  15. Mahfouz, M., Johnson, S., and Holman, R.T. (1981)Biochim. Biophys. Acta 663, 58–68.

    PubMed  CAS  Google Scholar 

  16. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  17. De Schrijver, R., and Privett, O.S. (1982)Lipids 17, 27–34.

    PubMed  Google Scholar 

  18. Cantin, M. (1970)Lab. Invest. 22, 558–568.

    PubMed  CAS  Google Scholar 

  19. Gueux, E., and Rayssiguier, Y. (1984)J. Nutr. 114, 1479–1483.

    PubMed  CAS  Google Scholar 

  20. Rayssiguier, Y., Gueux, E., and Weiser, D. (1981)J. Nutr. 111, 1876–1883.

    PubMed  CAS  Google Scholar 

  21. George, G.A., and Heaton, F.W. (1975)Biochem. J. 152, 609–615.

    PubMed  CAS  Google Scholar 

  22. Jaya, P., and Kurup, A.A. (1987)Ind. J. Biochem. 24, 92–95.

    CAS  Google Scholar 

  23. Gueux, E., and Rayssiguier, Y. (1981)Magnesium Bull. 3, 126–129.

    CAS  Google Scholar 

  24. Rayssiguier, Y., and Gueux, E. (1983)Magnesium 2, 132–138.

    CAS  Google Scholar 

  25. Gunther, T.H. (1981)Magnesium Bull. 3, 91–101.

    Google Scholar 

  26. Flink, E.B., Brick, J.E., and Shane, S.R. (1981)Arch. Int. Med. 141, 441–443.

    Article  CAS  Google Scholar 

  27. Reyes, A.J., and Leary, W.P. (1983)South Afr. Med. J. 64, 355–356.

    CAS  Google Scholar 

  28. Itokawa, Y., Sasagawa, S., and Fjuiwara, M. (1973)J. Nutr. Sci. Vitaminol. 19, 15–21.

    PubMed  CAS  Google Scholar 

  29. Crompton, M., Moser, R., Ludi, H., and Carafoli, E. (1978)Eur. J. Biochem. 28, 25–31.

    Article  Google Scholar 

  30. Murphy, E., Coll, K., Rich, T.L., and Williamson, J.R. (1980)J. Biol. Chem. 255, 6600–6608.

    PubMed  CAS  Google Scholar 

  31. Nigam, S., Averdunk, R., and Gunther, T. (1986)Leuk. Prostagland. Med. 23, 1–10.

    Article  CAS  Google Scholar 

  32. Rey, R.S., and McCord, J.M. (1983) “Superoxide and Ischemia In Conversion of Xanthine Dehydrogenase to Xanthine Oxidase”. Proceedings of the 3rd International Conference on Superoxide and Superoxide Dismutase. (Greenwald, R., Cohen, G., eds.) pp. 145–153, Elsevier Publ. Co., New York.

    Google Scholar 

  33. Dean, P.J. (1985) “The Role of Oxygen Concentrations in Oxidative Stress: Hypoxic and Hyperoxic Models.” In Oxidative Stress (Helmut, S. ed.) pp. 152–189, Academic Press, New York.

    Google Scholar 

  34. Cunnane, S.C., Soma, M., McAdoo, K.R., and Horrobin, D.F. (1985)J. Nutr. 115, 1498–1503.

    PubMed  CAS  Google Scholar 

  35. Soma, M., Cunnane, S.C., Horrobin, D.F., Manko, M.S., Honda, M., and Hatano, M. (1988)Prostaglandins 36, 431–436.

    Article  PubMed  CAS  Google Scholar 

  36. Cunnane, S.C., and Wahle, K.W. (1981)Lipids 16, 771–774.

    PubMed  CAS  Google Scholar 

  37. Burton, R.F. (1980)Comp. Biochem. Physiol. 65, 1–4.

    Article  Google Scholar 

  38. Fleckenstein, A. (1983) Calcium Antagonism in Heart and Smooth Muscles (Wiley Interscience, N.Y).

    Google Scholar 

  39. Schwartz, R., Woodcock, M.A., Blakely, J.D., Wang, F.L., and Khairallah, E.A. (1970)J. Nutr. 97, 123–128.

    Google Scholar 

  40. Gunther, T., Ising, H., and Merker, H. (1978)J. Clin. Chem. Clin. Biochem. 16, 293–297.

    PubMed  CAS  Google Scholar 

  41. Gomez Dumm, I.N.T., de Alaniz, M.J.T., and Brenner, R.R. (1978)J. Lipid Res. 17, 616–621.

    Google Scholar 

  42. Gomez Dumm, I.N.T., de Alaniz, M.J.T., and Brenner, R.R. (1978)Lipids 13, 649–652.

    Article  Google Scholar 

  43. Renaud, S., Kuba, K., Goulet, C., Lemire, Y., and Allard, C. (1970)Cir. Res. 26, 553–564.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mahfouz, M.M., Kummerow, F.A. Effect of magnesium deficiency on Δ6 desaturase activity and fatty acid composition of rat liver microsomes. Lipids 24, 727–732 (1989). https://doi.org/10.1007/BF02535212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535212

Keywords

Navigation