Skip to main content
Log in

Molecular species of glycerophospholipids and sphingomyelins of human erythrocytes: Improved method of analysis

  • Published:
Lipids

Abstract

This study reports the application of modern methods of molecular species analysis in determination of the structure of both major and minor glycerophospholipids and sphingomyelins of human erythrocytes. Individual phospholipid classes were resolved from total lipid extracts by thin-layer chromatography. Diradylglycerols were released by phospholipase C and converted into trimethylsilyl ethers, which were resolved into the alkenylacyl, alkylacyl and diacylglycerol subclasses by normal phase high performance liquid chromatography. Molecular species of diradylglycerols and ceramides were quantitated according to carbon and double bond number by gas liquid chromatography using a fused silica capillary column wall-coated with bonded RTx-2330. The molecular species of ceramides were determined by GC/MS. The diradyl glycerophosphocholines contained 93.0% diacyl, 4.6% alkylacyl and 2.5% alkenylacyl, white the diradyl glycerophosphoethanolamines were made up of 48.8% diacyl, 47.8% alkenylacyl and 3.4% alkylacyl subclasses. Analysis of the molecular species showed that the long chain polyunsaturated acids were mainly combined with C16 in all diradyl GPC subclasses and in diacyl GPE, while in the alkylacyl and alkenylacyl GPE and in diacyl glycerophosphoinositol and diacyl glycerophosphoserine they were combined mainly with C18 saturated fatty chains. In addition to the C16 and C18 alkyl and alkenyl, the ether fractions also contained significant proportions of C20, C22 and C24 chains. The molecular species of the ceramide moieties of the SPH were made up largely of mono- and diunsaturated species. Over 200 molecular species were identified and quantitated in a representative sample of human red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CV:

coefficients of variation

FAME:

fatty acid methyl esters

FID:

flame ionization detection

GC:

gas chromatography

GC/MS:

gas chromatography/mass spectroscopy

GLC:

gas-liquid chromatography

GPC:

glycerophosphocholines

GPE:

glycerophosphoethanolamines

GPI:

glycerophosphoinositol

GPL:

glycerophospholipids

GPS:

glycerophosphoserine

HPLC:

high performance liquid chromatography

PI:

phosphatidylinositol

PS:

phosphatidylserine

SPH:

sphingomyelins

TLC:

thin-layer chromatography

TMS:

trimethylsilyl

BDMS:

tertiary-butyldimethylsilyl

References

  1. Berridge, M.J. (1987)Ann. Rev. Biochem. 56, 159–193.

    PubMed  CAS  Google Scholar 

  2. Sivakoff, M., Pure, E., Hsueh, W., and Needleman, P. (1979)Fed. Proc. 38, 78–82.

    PubMed  CAS  Google Scholar 

  3. Aveldano, M.I., and Sprecher, H. (1987)J. Biol. Chem. 262, 1180–1186.

    PubMed  CAS  Google Scholar 

  4. Spener, F. (1983) inEther Lipids (Mangold, H.K., and Paltauf, F., eds.) pp. 239–259, Academic Press, New York.

    Google Scholar 

  5. Mangold, H.K., and Weber, N. (1987)Lipids 22, 789–799.

    PubMed  CAS  Google Scholar 

  6. Demopoulos, C., Pinchard, R.N., and Hanahan, D.J. (1979)J. Biol. Chem. 254, 9355–9358.

    PubMed  CAS  Google Scholar 

  7. Blank, M.L., Snyder, F., Byers, L.W., Brooks, B., and Muirhead, E.E. (1979)Biochem. Biophys. Res. Commun. 90, 1194–1200.

    PubMed  CAS  Google Scholar 

  8. Low, M. (1987)Biochem. J. 244, 1–13.

    PubMed  CAS  Google Scholar 

  9. Myher, J.J., Pind, S., and Kuksis, A. (1988)J. Am. Oil Chem. Soc. 65, 524. Abs. No. HH7.

    Google Scholar 

  10. Kuksis, A., Breckenridge, W.C., Marai, L., and Stachnyk, O. (1969)J. Lipids Res. 10, 25–32.

    CAS  Google Scholar 

  11. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  12. Pind, S., and Kuksis, A. (1987)Biochim. Biophys. Acta 901, 78–87.

    Article  PubMed  CAS  Google Scholar 

  13. Myher, J.J., and Kuksis, A. (1984)Can. J. Biochem. Cell Biol. 62, 352–362.

    Article  PubMed  CAS  Google Scholar 

  14. Kuksis, A., and Myher, J.J. (1986) inFat Absorption (Kuksis, A., ed.), Vol. 1, pp. 1–41, CRC Press, Boca Raton, Florda.

    Google Scholar 

  15. Myher, J.J., Kuksis, A., Breckenridge W.C., and Little, J.A. (1981),Can. J. Biochem. 59, 626–636.

    Article  PubMed  CAS  Google Scholar 

  16. Myher, J.J., and Kuksis, A. (1984)J. Biochem. Biophys. Methods 10, 13–23.

    Article  PubMed  CAS  Google Scholar 

  17. Myher, J.J., and Kuksis, A. (1982)Can. J. Biochem. 60, 638–650.

    PubMed  CAS  Google Scholar 

  18. Dodge, J.T., and Phillips G.B. (1967)J. Lipid Res. 8, 667–675.

    PubMed  CAS  Google Scholar 

  19. Van Golde, L.M.G., Tomasi, V., and Van Deenen, L.L.M. (1967)Chem. Phys. Lipids 1, 282–293.

    Article  Google Scholar 

  20. Marai, L., and Kuksis, A. (1969)J. Lipid Res. 10, 141–152.

    PubMed  CAS  Google Scholar 

  21. Rogiers, V. (1980)J. Chromatogr. 182, 27–33.

    PubMed  CAS  Google Scholar 

  22. Diagne, A., Fauvel, J., Record, M., Chap, H., and Douste-Blazy, L. (1984)Biochim. Biophys. Acta 793, 221–231.

    PubMed  CAS  Google Scholar 

  23. Breckenridge, W.C., and Palmer, F.B.St.C. (1982)Biochim. Biophys. Acta 712, 707–711.

    PubMed  CAS  Google Scholar 

  24. Antoku, Y., Sakai, T., and Iwashita, H. (1985)J. Chromatogr. Biomed. Applic. 342, 359–362.

    Article  CAS  Google Scholar 

  25. Child, P., Myher, J.J., Kuypers, F.A., Op den Kamp, J.A.F., Kuksis, A., and Van Deenen, L.L.M. (1985)Biochim. Biophys. Acta 812, 321–332.

    Article  PubMed  CAS  Google Scholar 

  26. Touchstone, J.C., Alvarez, J.G., Levin, S.S., and Storey, B.J. (1985)Lipids 20, 869–875.

    Article  PubMed  CAS  Google Scholar 

  27. Nelson, G.J. (1972) inBlood Lipids and Lipoproteins (Nelson, G.J., ed.), pp. 317–386, Wiley-Interscience, New York.

    Google Scholar 

  28. Van Meer, G., Poorthuis, B.J.H.M., Op den Kamp, J.A.F., and Van Deenen, L.L.M. (1980)Eur. J. Biochem. 103, 283–288.

    Article  PubMed  Google Scholar 

  29. Shohet, S.B. (1971)J. Lipid Res. 12, 139–142.

    PubMed  CAS  Google Scholar 

  30. Myher, J.J., Kuksis, A., and Pind, S. (1989)Lipids 24, 408–418.

    PubMed  CAS  Google Scholar 

  31. Roberts, W.L., Myher, J.J., Kuksis, A., and Rosenberry, T.L. (1987)Biochem. Biophys. Res. Commun. 150, 271–277.

    Article  Google Scholar 

  32. Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G., and Rosenberry, T.L. (1988)J. Biol. Chem. 263, 18766–18775.

    PubMed  CAS  Google Scholar 

  33. Gaulton, G.N., Kelly, K.L., Pawlowski, J., Mato, J.M., and Jarett, L. (1988)Cell 53, 963–970.

    Article  PubMed  CAS  Google Scholar 

  34. Van Blitterswijk, W.J., Hilkmann, H., and Storme, G.A. (1987)Lipids 22, 820–823.

    PubMed  Google Scholar 

  35. Op den Kamp, J.A.F. (1979)Ann. Rev. Biochem. 48, 47–71.

    Article  PubMed  CAS  Google Scholar 

  36. Op den Kamp, J.A.F., Roelofsen, B., and Van Deenen, L.L.M. (1985)Trends Biochem. Sci. 10, 320–323.

    Article  CAS  Google Scholar 

  37. Boegheim, J.P.J. Jr., Van Linde, M., Op den Kamp, J.A.F., and Roelofsen, B. (1983)Biochim. Biophys. Acta 735, 438–442.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Myher, J.J., Kuksis, A. & Pind, S. Molecular species of glycerophospholipids and sphingomyelins of human erythrocytes: Improved method of analysis. Lipids 24, 396–407 (1989). https://doi.org/10.1007/BF02535147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535147

Keywords

Navigation