Skip to main content
Log in

Prostaglandin and acyl chain effects on glutamate dehydrogenase activity

  • Published:
Lipids

Abstract

Prostaglandins A1 (PGA1), A2, B1, B2, E1, E2, F, F, and 19 esterified natural fatty acids were tested as effectors of beef liver glutamate dehydrogenase (L-glutamate: NAD(P)+, oxidoreductase [deaminating], EC 1.4.1.3). All prostaglandins tested are found to activate the enzyme initially, but only PGA2>PGB2≥PGA1 cause a subsequent time-dependent loss (not inhibition) of NADH oxidation activity. Both PGA1 and PGA2 desensitize glutamate dehydrogenase to allosteric activation by ADP, whereas PGA2 and PGB2 desensitize to allosteric inactivation by GTP. Preincubation of enzyme with diethylstilbestrol prevents the initial activation by the PG. Of the methyl esters, only prostaglandin precursors inactivated the enzyme. Simultaneous desensitization to the ADP and GTP allosteric effects resulted. Multiple esterification to glycerol or phospholipids enhanced the action of linoleoyl and diminished the action of linolenoyl chains. Preincubation of the PGA with glutathione or cysteine prevents the inactivation; i.e., the sulfhydryl binding region of the prostaglandin must be free for enzyme to be inactivated. Sulfhydryl reagents also protect the enzyme from the effects of the unsaturated acyl chains, and pHMB mimics acyl protection against GTP allosteric inactivation. Where the lipid effector is active against sulfhydryl groups, the desensitizations to the ADP and GTP allosteric effectors are reciprocal. The initial activation, subsequent inactivation and desensitization to ADP and GTP are all characteristic of binding in the estrogen-specific effector site, suggesting this site as the target for PG and acyl action. In the PGA2 activation, the effect is found to be amplified by the cooperativity of the enzyme at 1 PG molecule/6 molecules of GDH. We conclude from the action of the PG and structural analogs that the initial activation of glutamate dehydrogenase is caused by α,β-unsaturated monoketo cyclopental structures. GTP inhibition is blocked primarily by diketo structures which eventually inactivate the enzyme. ADP activation is blocked by sulfhydryl binding of the unsaturated cyclopental keto structure of the PG. Appearance of a 270 nm absorbance simultaneous to the acyl effects on the enzyme suggests that conjugated unsaturations are responsible for the precursor's qualitatively similar action to that of the PG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lejohn, H.B., Stevenson, R.M., and Meuser, R. (1970) J. Biol. Chem. 245, 5569–5576.

    PubMed  CAS  Google Scholar 

  2. Dodd, G.H. (1973) Eur. J. Biochem. 33, 418–427.

    Article  PubMed  CAS  Google Scholar 

  3. Godinot, C., and Lardy, H.A. (1973) Biochemistry 12, 2051–2060.

    Article  PubMed  CAS  Google Scholar 

  4. Godinot, C. (1979) Biochemistry 12, 4029–4032.

    Article  Google Scholar 

  5. Johnson, M., and Ramwell, P.W. (1973) Prostaglandins 3, 703–719.

    Article  PubMed  CAS  Google Scholar 

  6. Kingston, W.P., and Graves, H.W. (1976) Prostaglandins 12, 51–69.

    Article  PubMed  CAS  Google Scholar 

  7. Parkes, D.G., and Eling, T.E. (1974) Biochemistry 13, 2598–2604.

    Article  PubMed  CAS  Google Scholar 

  8. Attallah, A.A., and Lee, J.B. (1973) Prostaglandins 4, 703–709.

    Article  PubMed  CAS  Google Scholar 

  9. Smigel, M., and Fleischer, S. (1973) Fed. Proc. 32, 454.

    Google Scholar 

  10. Rao, C.V. (1974) J. Biol. Chem. 249, 7203–7209.

    PubMed  CAS  Google Scholar 

  11. Kuehl, F.A., Humes, J.L., Ham, E.A., and Cirillo, V.J. (1972). Intra-Sci. Chem. Rep. 6, 85–95.

    CAS  Google Scholar 

  12. Johnson, M., Jessup, R., and Ramwell, P.W. (1974) Prostaglandins 5, 125–136.

    Article  CAS  Google Scholar 

  13. Nemat-Gorgani, M., and Dodd, G. (1977) Eur. J. Biochem. 74, 139–147.

    Article  PubMed  CAS  Google Scholar 

  14. Kwon, T., and Watts, B.M. (1963) J. Food Sci. 28, 627–630.

    Article  CAS  Google Scholar 

  15. Arnold, H., and Maier, K.P. (1971) Biochim. Biophys. Acta 251, 133–140.

    PubMed  CAS  Google Scholar 

  16. Huang, C., and Frieden, C. (1969) Proc. Natl. Acad. Sci. 64, 338–344.

    Article  PubMed  CAS  Google Scholar 

  17. Goldin, B.R., and Frieden, C. (1971) Curr. Top. Cell Regul. 4, 77–117.

    CAS  Google Scholar 

  18. Pal, P.K., and Colman, R.F. (1976) Eur. J. Biochem. 68, 437–443.

    Article  PubMed  CAS  Google Scholar 

  19. Eisenberg, H., Josephs, R., and Reisler, E. (1976) Adv. Protein Chem. 30, 101–181.

    Article  PubMed  CAS  Google Scholar 

  20. Duggan, D.E., and Noll, R.M. (1965) Arch. Biochem. Biophys. 109, 388–396.

    Article  CAS  Google Scholar 

  21. Singer, T.P. (1948) J. Biol. Chem. 174, 11–21.

    CAS  PubMed  Google Scholar 

  22. Holbrook, J.J., Liljas, A., Steindel, S.J., and Rossmann, M.G. (1975) in The Enzymes II (Boyer, P.D., ed.) Part A, p. 258, Academic Press, New York, NY.

    Google Scholar 

  23. Ham, E.A., Oien, H.G., Ulm, E.H., and Kuehl, F.A., Jr. (1975) Prostaglandins 10, 217–229.

    PubMed  CAS  Google Scholar 

  24. Cagen, L.M., Pisano, J.J., Ketley, J.N., Habig, W.H., and Jakoby, W.B. (1975) Biochim. Biophys. Acta 398, 205–208.

    PubMed  CAS  Google Scholar 

  25. Chaudhari, A., Anderson, M.W., and Eling, T.E. (1978) Biochim. Biophys. Acta 531, 56–64.

    PubMed  CAS  Google Scholar 

  26. Cagen, L.M., Fales, H.M., and Pisano, J.J. (1976) J. Biol. Chem. 251, 6550–6554.

    PubMed  CAS  Google Scholar 

  27. Michel, F., Pons, M., Descomps, B., and Orastes de Paulet, A. (1978) Eur. J. Biochem. 84, 267–274.

    Article  PubMed  CAS  Google Scholar 

  28. Nishida, N., and Yielding, K.L. (1970) Arch. Biochem. Biophys. 141, 409–415.

    Article  PubMed  CAS  Google Scholar 

  29. Bitensky, M.W., Yielding, K.L., and Tomkins, G.M. (1965) J. Biol. Chem. 240, 663–667.

    PubMed  CAS  Google Scholar 

  30. Pal, P.K., and Colman, R.F. (1976) Eur. J. Biochem. 68, 437–443.

    Article  PubMed  CAS  Google Scholar 

  31. O'Brien, P.J. (1969) Can. J. Biochem. 47, 485–492.

    Article  PubMed  Google Scholar 

  32. McMurray, W.C. (1973) in Form and Function of Phospholipids, BBA Library (Ansell, G.B., Hawthorne, J.N., and Dawson, R.M.C., eds.) Vol. 3, Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  33. Garssen, G.J., Vleigenthart, J.F.G., and Boldingh, J. (1971) Biochem. J. 122, 327–332.

    PubMed  CAS  Google Scholar 

  34. Hamberg, M. (1975) Lipids 10, 78–92.

    Article  Google Scholar 

  35. Holman, R.T. (1954) in Progress in Fats and Other Lipids (Holman, R.T., Lundberg, W.O., and Malkin, T., eds.) Vol. 2, p. 60, Academic Press, Oxford.

    Google Scholar 

  36. Vioque, E., and Holman, R.T. (1962) Arch. Biochem. Biophys. 99, 522–528.

    Article  PubMed  CAS  Google Scholar 

  37. Holman, R.T., and Burr, G.O. (1946) J. Am. Chem. Soc. 68, 562–566.

    Article  CAS  Google Scholar 

  38. Lundberg, W.O. (1962) in Lipids and Their Oxidation (Schultz, H.W., Day, E.A., and Sinnhuber, R.C., eds) p. 68, AVI Publishing Co., Inc., Westport, CT.

    Google Scholar 

  39. Walling, C., and Halmreich W. (1959) J. Am. Chem. Soc. 81, 1144–1148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Shafer, P.T., Fiskin, A.M. Prostaglandin and acyl chain effects on glutamate dehydrogenase activity. Lipids 17, 297–306 (1982). https://doi.org/10.1007/BF02534945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534945

Keywords

Navigation