Skip to main content
Log in

Enzymatic hydrolysis in vitro of thermally oxidized sunflower oil

  • Published:
Lipids

Abstract

The hydrolysis of thermally oxidized sunflower oil by pancreatic lipase was studied in relation to chemical changes in the acylglycerols. Four classes of compounds (monomers, dimers, trimers and polymers) formed from the acylglycerols were separated from the heated oils by column chromatography on silica gel, and further verified by thin layer chromatography. Each fraction, after analyses for generaly properties, was subjected to a time course study of hydrolysis by pancreatic lipase over a 30-min period. After 70 hr of heating, the amount of hydrolysis for the acylglycerol dimers was only about half that of the monomers, and that for the trimers was, in turn, about one-third that of the monomers. The polymers were the least hydrolyzed and showed no further reaction after 5 min. The reduction in enzymatic hydrolysis of isolated fractions from the thermally oxidized oils indicates structural differences, related to formation of polar compounds and polymerization products. Adverse effects on animals from feeding these materials can be attributed partly to inhibition of hydrolysis resulting in less available energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLC:

thin layer chromatography

NVOP:

nonvolatile oxidation products

IPE:

isopropyl ether

HEX:

n-hexane

DEE:

diethyl ether

References

  1. Keeney, M. (1962) in Symposium on Foods: Lipids and Their Oxidation (Schultz, H.W., Day, E.A., and Sinnhuber, R.O., eds.) pp. 79–89, AVI Publishing Co. Inc., Westport, CT.

    Google Scholar 

  2. Chang, S.S., Peterson, R.J., and Ho, C.-T. (1978) J. Am. Oil Chem. Soc. 55, 718–727.

    PubMed  CAS  Google Scholar 

  3. Perkins, E.G., and Van Akkeren, L.A. (1965) J. Am. Oil Chem. Soc. 42, 782–786.

    PubMed  CAS  Google Scholar 

  4. Artman, N.R., and Alexander, J.C. (1968) J. Am. Oil Chem. Soc. 45, 643–648.

    CAS  Google Scholar 

  5. Guillaumin, R. (1973) Rev. Fr. Corps Gras 20, 285–290.

    CAS  Google Scholar 

  6. Fritsch, C.W. (1981) J. Am. Oil Chem. Soc. 58, 272–274.

    CAS  Google Scholar 

  7. Guhr, G., and Waibel, J. (1978) Fette Seifen Anstrichm. 80, 106–112.

    Article  CAS  Google Scholar 

  8. Billek, G. (1979) Nutr. Metab. 24 (Suppl. 1), 200–210.

    Google Scholar 

  9. Artman, N.R., and Smith, D.E. (1972) J. Am. Oil Chem. Soc. 49, 318–326.

    CAS  Google Scholar 

  10. Alexander, J.C. (1981) J. Toxicol. Environ. Health 7, 125–138.

    Article  PubMed  CAS  Google Scholar 

  11. Risser, N., Kummerow, F.A., and Perkins, E.G. (1966) Proc. Soc. Exp. Biol. Med. 121, 294–298.

    PubMed  CAS  Google Scholar 

  12. Hsieh, A., and Perkins, E.G. (1976) Lipids 11, 763–768.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson, O.C., Perkins, E.G., Sugai, M., and Kummerow, F.A. (1957) J. Am. Oil Chem. Soc. 34, 594–597.

    CAS  Google Scholar 

  14. Yoshida, H., and Alexander, J.C. (1983) Lipids 18, 402–407.

    PubMed  CAS  Google Scholar 

  15. Ota, S., Mukai, A., and Yamamoto, I. (1963) Yukagaku 12, 409–415.

    CAS  Google Scholar 

  16. Ohfuji, T., and Kaneda, T. (1970) Yukagaku 19, 1071–1074.

    CAS  Google Scholar 

  17. Paradis, A.J., and Nawar, W.W. (1981) J. Am. Oil Chem. Soc. 58, 635–638.

    CAS  Google Scholar 

  18. Method Cd 1–25 (1972) The Official and Tentative Methods of the American Oil Chemists' Society, 3rd edn., American Oil Chemists' Society, Champaign, IL.

  19. Snyder, F., and Stephens, N. (1959) Biochim. Biophys. Acta 34, 244–245.

    Article  PubMed  CAS  Google Scholar 

  20. Mattson, F.H., and Volpenhein, R.A. (1961) J. Lipid Res. 2, 58–62.

    CAS  Google Scholar 

  21. Ohfuji, T., and Kaneda, T. (1970) Yukagaku 19, 1068–1071.

    CAS  Google Scholar 

  22. Iwai, M., Tsujisaka, Y., Okumura, S., and Katsumoto, H. (1980) Yukagaku 29, 587–591.

    CAS  Google Scholar 

  23. Perkins, E.G., Vachha, S.M., and Kummerow, F.A. (1970) J. Nutr. 100, 725–731.

    PubMed  CAS  Google Scholar 

  24. Artman, N.R. (1969) in Advances in Lipid Research (Paoletti, R., and Kritchevsky, D., eds.) Vol. 7, pp. 245–330, Academic Press, New York, NY.

    Google Scholar 

  25. Eisenhauer, R.A., Beal, R.E., and Griffin, E.L. (1963) J. Am. Oil Chem. Soc. 40, 129–131.

    PubMed  CAS  Google Scholar 

  26. Ohfuji, T., Sakurai, K., and Kaneda, T. (1972) Yukagaku 21, 68–73.

    CAS  Google Scholar 

  27. Waltking, A.E., Seery, W.E., and Bleffert, G.W. (1975) J. Am. Oil Chem. Soc. 52, 96–100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yoshida, H., Alexander, J.C. Enzymatic hydrolysis in vitro of thermally oxidized sunflower oil. Lipids 18, 611–616 (1983). https://doi.org/10.1007/BF02534671

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534671

Keywords

Navigation