Skip to main content
Log in

Changes in renal phospholipid fatty acids in diabetes mellitus: Correlation with changes in adenylate cyclase activity

  • Published:
Lipids

Abstract

Male Sprague-Dawley rats made diabetic with alloxan (37.5 mg/kg) or streptozotocin (65 mg/kg) were killed after 3–6 weeks of disease; renal tissues were studied for phospholipid content and for fatty acid composition of the phospholipids. No consistent change was noted in total phospholipid content nor in the proportion of various phospholipids in diabetics. However, diabetic animals showed a consistent reduction of arachidonic acid content in phosphatidylcholine (PC) and phosphatidylethanolamine in whole renal cortex, plasma membranes purified from renal cortex, and in isolated glomeruli. Associated with the fall in arachidonic acid was a rise in linoleic acid in the samples studied. Insulin therapy returned the fatty acid profiles to normal. These results are similar to patterns observed in other diabetic tissues and suggest that diabetes is associated with generalized changes in cell membranes. That these structural changes may have functional significance is suggested by demonstrated alterations in the temperature-dependence of adenylate cyclase in renal plasma membranes of diabetic animals. Adenylate cyclase is thought to be intimately associated with PC in plasma membranes, a phospholipid showing significant changes in fatty acid content in diabetes (unsaturation index 165±2 for normals, 147±5 for diabetics). Na+,K au+-ATPase which is thought to be primarily associated in vivo with phosphatidylinositol (PI), shows no change in apparent energy of activation in diabetes. The fatty acid content of PI is minimally altered in diabetes, and the unsaturation index is unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiting, P.H., Bowley, M., Sturton, R.G., Pritchard, P.H., Brindley, D.N., and Hawthrone, J.N. (1977) Biochem. J. 168, 147–153.

    PubMed  CAS  Google Scholar 

  2. Faas, F.H., and Carter, W.J. (1981) Lipids 15, 953–961.

    Article  Google Scholar 

  3. Woods, J.A., Knauer, T.E., and Lamb, R.G. (1981) Biochim. Biophys. Acta 666, 482–492.

    PubMed  CAS  Google Scholar 

  4. Harrison, H.E., Reece, A.H., and Johnson, M. (1980) Diabetologia 18, 65–68.

    Article  PubMed  CAS  Google Scholar 

  5. Gerrard, J.M., Stuart, M.J., Rao, G.H.R., Steffest, M.W., Mauer, S.M., Brown, D.M., and White, J.G. (1980) J. Lab. Clin. Med. 95, 950–958.

    PubMed  CAS  Google Scholar 

  6. Brown, D.M., Gerrard, J.M., Peller, J., Rao, G.H.R., and White, J.G. (1980) Diabetes 29, 219 (Abstract).

    Google Scholar 

  7. Kang, S.S., Fears, R., Noirot, S., Mbanya, J.N., and Yudkin, J. (1982) Diabetologia 22, 285–288.

    Article  PubMed  CAS  Google Scholar 

  8. Hamel, F.G. (1983) Ph.D. thesis, Indiana University, Indianapolis.

  9. Marx, S.J., Fedak, S.A., and Aurbach, G.D. (1972) J. Biol. Chem. 247, 6913–6918.

    PubMed  CAS  Google Scholar 

  10. Kreisberg, J.I., Hoover, R.L., and Karnovsky, M.J. (1978) Kidney Int. 14, 21–30.

    PubMed  CAS  Google Scholar 

  11. Siakotos, A.N., Rouser, G. (1965) J. Am. Oil Chem. Soc. 42, 913–919.

    PubMed  CAS  Google Scholar 

  12. Rouser, G., Siakotos, A.N., and Fleischer, S. (1966) Lipids 1, 85–86.

    Article  CAS  Google Scholar 

  13. Queener, S.F., Fleming, J.W., and Bell, N.H. (1978) J. Biol. Chem. 253, 9033–9040.

    PubMed  CAS  Google Scholar 

  14. Besch, H.R., Jr., Jones, L.R., and Watanabe, A.M. (1976) Circ. Res. 39, 586–595.

    PubMed  CAS  Google Scholar 

  15. Shakir, K.M.M., Sundaram, S.G., and Margolis, S. (1978) J. Lipid Res. 19, 433–442.

    PubMed  CAS  Google Scholar 

  16. Gornall, A.G., Pardavill, C.J., and David, M.M. (1949) J. Biol. Chem. 177, 751–766.

    Google Scholar 

  17. Tou, J.-S., and Huggins, C.G. (1977) in Lipid Metabolism in Mammals (Snyder, F., ed.) (Vol. 2, pp. 39–82, Plenum Press, New York.

    Google Scholar 

  18. Burns, B.J., and Elwood, J.C. (1969) Biochim. Biophys. Acta 187, 307–318.

    PubMed  CAS  Google Scholar 

  19. Rouser, G., Simon, G., and Kritchevsky, G. (1969) Lipids 4, 599–606.

    Article  PubMed  CAS  Google Scholar 

  20. Andersen, J.M., and Dietschy, J.M. (1979) J. Lipid Res. 20, 740–752.

    PubMed  CAS  Google Scholar 

  21. Roelofsen, B., and Trip, M.V.L.-S. (1981) Biochim. Biophys. Acta 647, 302–306.

    Article  PubMed  CAS  Google Scholar 

  22. Ross, E. (1982) J. Biol. Chem. 257, 10751–10758.

    PubMed  CAS  Google Scholar 

  23. Poon, R., Richards, J.M., and Clark, W.R. (1981) Biochim. Biophys. Acta 649, 58–66.

    Article  PubMed  CAS  Google Scholar 

  24. Chambaz, J., Pepin, D., Robert, A., Wolf, C., and Bereziat, G. (1983) Biochim. Biophys. Acta 727, 313–326.

    Article  PubMed  CAS  Google Scholar 

  25. Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, S.M., Kupcho-Sandberg, S., and Brown, D.M. (1983) Proc. Natl. Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Clark, D.L., Hamel, F.G. & Queener, S.F. Changes in renal phospholipid fatty acids in diabetes mellitus: Correlation with changes in adenylate cyclase activity. Lipids 18, 696–705 (1983). https://doi.org/10.1007/BF02534536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534536

Keywords

Navigation