Skip to main content
Log in

Turnover of phosphocholine and phosphoethanolamine in ether-phospholipids of krebs II ascite cells

  • Published:
Lipids

Abstract

Krebs II ascite cells suspended in Eagle medium were incubated at 37 C for up to 6 hr in the presence of [3H] glycerol or [32P] orthophosphate. After extraction, their lipids were treated with guinea pig phospholipase A1 under conditions where all diacyl-phospholipids (diacyl-PL) became hydrolyzed with 55% recovery of lyso-PL. Using a bidimensional thin layer chromatography (TLC) involving exposure to HCl fumes between the two runs, it then became possible to determine at once the specific radioactivity of the three subclasses (diacyl-, alkylacyl-and alkenylacyl) present in choline glycerophospholipids (CGP) and ethanolamineglycerophospholipids (EGP). Compared to diacyl-PL, a lower de novo synthesis of ether subclasses was evidenced in both CGP and EGP by [3H] glycerol incorporation. Although the same profile was obtained for CGP with [32P] orthophosphate, the three EGP subclasses displayed in this case the same specific radioactivity.

These data indicate a higher turnover rate of the polar head group of ether-EGP compared to either-CGP. The simple methodology used in the present study might thus prove helpful in developing enzymatic studies dealing with the mechanism of this accelerated renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Tamer, A., Record, M., Fauvel, J., Chap, H. and Douste-Blazy, L. (1984) Biochim. Biophys. Acta 793, 213–220.

    PubMed  CAS  Google Scholar 

  2. Jungalwala, F.B., Evans, J.E., and McCluer, R.H. (1984) J. Lipid Res. 25, 738–749.

    PubMed  CAS  Google Scholar 

  3. Waku, K., Nakazawa, Y., and Mori, W. (1976) J. Biochem. 80, 711–716.

    PubMed  CAS  Google Scholar 

  4. Mueller, H.W., O'Flaherty, J.T., and Wykle, R.L. (1982) Lipids 17, 72–77.

    PubMed  CAS  Google Scholar 

  5. Nakagawa, Y., and Horrocks, L.A. (1983) J. Lipid Res. 24, 1268–1275.

    PubMed  CAS  Google Scholar 

  6. Freysz, L., Bieth, R., and Mandel, P. (1969) J. Neurochem. 16, 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  7. Fauvel, J., Bonnefis, M.J., Sarda, L., Chap, H. Thouvenot, J.P., and Douste-Blazy, L. (1981) Biochim. Biophys. Acta 663, 446–456.

    PubMed  CAS  Google Scholar 

  8. Record, M., Bes, J.C., Chap, H., and Douste-Blazy, L. (1982) Biochim. Biophys. Acta 688, 57–65.

    Article  PubMed  CAS  Google Scholar 

  9. Bligh, E.G., and Dyer, W.J. (1959) Can. J. Biochem. Physiol. 37, 911–919.

    PubMed  CAS  Google Scholar 

  10. Böttcher, C.J.F., van Gent, C.M., and Pries, C. (1961) Anal. Chim. Acta 24, 203–204.

    Article  Google Scholar 

  11. Fauvel, J., Chap, H., Roques, V., and Douste-Blazy, L. (1984) Biochim. Biophys. Acta, 792, 72–78.

    PubMed  CAS  Google Scholar 

  12. Horrocks, L.A. (1968) J. Lipid Res. 9, 469–472.

    PubMed  CAS  Google Scholar 

  13. Fauvel, J., Chap, H., Roques, V., Sarda, L., and Douste-Blazy, L. (1984) Biochim. Biophys. Acta 792, 65–71.

    PubMed  CAS  Google Scholar 

  14. Waku, K., and Nakazawa, Y. (1978) Eur. J. Biochem. 88, 489–494.

    Article  PubMed  CAS  Google Scholar 

  15. Waku, K., and Nakazawa, Y. (1979) Eur. J. Biochem. 100, 317–320.

    Article  PubMed  CAS  Google Scholar 

  16. Goracci, G., Francescangelli, E., Piccinin, G.L., Binaglia, L., Woelk, H., and Porcellati, G. (1975) J. Neurochem. 24, 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  17. Friedberg, S.J., Heifetz, A., and Greene, R.C. (1971) J. Biol. Chem. 246, 5822–5827.

    PubMed  CAS  Google Scholar 

  18. Friedberg, S.J., and Heifetz, A. (1973) Biochemistry 12, 1100–1106.

    Article  PubMed  CAS  Google Scholar 

  19. Friedberg, S.J., and Heifetz, A. (1975) Biochemistry 14, 570–574.

    Article  PubMed  CAS  Google Scholar 

  20. Snyder, F., Blank, M.L., and Wykle, R.L. (1971) J. Biol. Chem. 246, 3639–3645.

    PubMed  CAS  Google Scholar 

  21. Horrocks, L.A., and Sharma, M. (1982) in Phospholipids (Hawthorne, J.N. and Ansell, G.B., eds.), pp. 51–93, Elsevier, Amsterdam.

    Google Scholar 

  22. Plantavid, M., Chap, H., Lloveras, J., and Douste-Blazy, L. (1981) Biochem. Pharmacol. 30, 293–297.

    Article  PubMed  CAS  Google Scholar 

  23. Michell, R.H. (1975) Biochim. Biophys. Acta 415, 81–147.

    PubMed  CAS  Google Scholar 

  24. Hosteltler, K.Y., and Hall, L.B. (1980) Biochem. Biophys. Res. Commun. 96, 388–393.

    Article  Google Scholar 

  25. Matsuzawa, Y. and Hostetler, K.Y. (1980) J. Biol. Chem. 255, 646–652.

    PubMed  CAS  Google Scholar 

  26. Edgar, A.D., and Freysz, L. (1982) Biochim. Biophys. Acta 711, 224–228.

    PubMed  CAS  Google Scholar 

  27. Gunawan, J., Vierbuchen, M., and Debuch, H. (1979) Hoppe Seyler's Z. Physiol. Chem. 360, 971–978.

    PubMed  CAS  Google Scholar 

  28. Wykle, R.L., Kraemer, W.F., and Schremmer, J.M. (1980) Biochim. Biophys. Acta 619, 58–67.

    PubMed  CAS  Google Scholar 

  29. Goracci, G., Horrocks, L.A., and Porcellati, G. (1977) FEBS Lett, 80, 41–44.

    Article  PubMed  CAS  Google Scholar 

  30. Goracci, G., Francescangelli, E., Horrocks, L.A., and Porcellati, G. (1981) Biochim. Biophys. Acta 664, 373–379.

    PubMed  CAS  Google Scholar 

  31. Colard, O., Breton, M., and Béréziat, G. (1984) Biochem. J. 222, 657–662.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

El Tamer, A., Record, M., Chap, H. et al. Turnover of phosphocholine and phosphoethanolamine in ether-phospholipids of krebs II ascite cells. Lipids 20, 699–703 (1985). https://doi.org/10.1007/BF02534390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534390

Keywords

Navigation