Skip to main content
Log in

In vitro 3D reconstruction of long bones using B-scan image processing

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An echographic image processing method has been developed, and validated by in vitro experiments, for the 3D reconstruction of the long bones of the newborn. The reconstruction of successive parallel cross-sections is obtained by a 2D reconstruction technique using radial B-scan image processing. The automatic segmentation of all the calculated images allows the extraction of the external contours of the skeleton. After structuring the explored volume using a contour association method, a contour interpolation step is required to solve the anisotropy problem, to obtain a 3D representation with cubic voxel lists. The results are encouraging, and a new mechanical part prototype of the acquisition system is under test for in vivo experiments. The main originality of the paper lies in the combination of different steps to obtain a practical solution to a clinical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carson, P. L., Meyer, C. R., Cherzinger, A. L. andOughton, T. V. (1981): ‘Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound’,Sciences,214, pp. 1141–1143

    Google Scholar 

  • De Guise, J. A., Dansereau, J. andLabelle, H. (1995): ‘Imagerie 3D pour la modélisation biomécanique osseuse’.Arch. Physiol. Biochem., Proc. of XXème Congrès de la Société de Biomécanique, Lausanne, Switzerland.

  • Dines, K. A. Fry, F. J., Patric, J. T. andGilmor, R. L. (1981): ‘Computerised ultrasound tomography of the human head: experimental results’.Ultrason. Imag., pp. 342–351.

  • Dines, K. A. andGoss, S. A. (1987): ‘Computed ultrasonic reflection tomography’,IEEE Trans. Ultrason. Ferroelectr. Freq. Control,34, (3), pp. 309–318

    Article  Google Scholar 

  • Dufrenois, F., Durin, H., Reboul, S. andDubus, J. P. (1995): ‘Contour interpolation using snake. Application to 3D reconstruction from tomograph images’,Innov. Tech. Biol. Med.,16, pp. 391–416

    Google Scholar 

  • Durikovic, R., Yauchi, T., Kaneda, K. andYamashita, H. (1996): ‘Arbitrary cross-sections from biological data based on shape of organs’, Proc. 18th Annual Conf. IEEE EMBS'96, Amsterdam.

  • Friedrich, M., Hundt, E. andMaderlechner, G. (1982): ‘Computerised ultrasound echo tomography of the breast’,Europ. J. Radiol.,2, pp. 78–87

    Google Scholar 

  • Greenleaf, J. F. andBahn, R. C. (1980): ‘Clinical imaging with transmissive ultrasonic computerised tomography’,IEEE Trans.,BME-28, pp. 177–186

    Google Scholar 

  • Greenleaf, J. F., Grisvold, J. J. andBahn, R. C. (1982): ‘Computered transmission ultrasound tomograph’,Med. Prog. Technol.,9, pp. 165–170

    Google Scholar 

  • Guo, J. F., Cai, Y. L. andWang, Y. P. (1995): ‘Morphology-based interpolation for 3D medical image reconstruction’,Comput. Med. Imag. Graph.,19, pp. 267–279

    Article  Google Scholar 

  • Herman, G. T. andLiu, H. K. (1977): ‘Three-dimensional information is computed tomography’,J. Comput. Assist. Tomogr.,1, pp. 155–160

    Article  Google Scholar 

  • Higgins, W. E., Morice, C. andRitman, E. L. (1993): ‘Shape-based interpolation of tree-like structures in three-dimensional images’,IEEE Trans. Med. Imag.,12, pp. 439–450

    Article  Google Scholar 

  • Hiller, H. andErmert, H. (1984): ‘System analysis of ultrasound reflection mode computerised tomography’,IEEE Trans.,SU-31, pp. 240–250

    Google Scholar 

  • Koivukangas, J. (1984): ‘Ultrasound imaging in operative neurosurgery: an experimental clinical study with reference to ultrasound holographic B (UHB) imaging’. Doctoral thesis, Acta Univ. Ouluensis D 1157 sol; 10, University Oulu

  • Koivukangas, J., Ylitalo, J., Alasaarela, E. andTaurianen, A. (1986): ‘Three-dimensional ultrasound imaging of brain for neurosurgery’,Ann. Clin. Res.,18 (suppl. 47), pp. 65–72

    Google Scholar 

  • Lin, W. C., Liang, C. C. andChen, C. T. (1988): ‘Dynamic elastic interpolation for 3D medical image reconstruction from serial cross-sections’,IEEE Trans. Med. Imag.,7, pp. 225–232

    Article  Google Scholar 

  • Lin, W. C., Chen, S. Y. andChen, C. T. (1989): ‘A new surface interpolation technique for reconstructing 3D objects from serial cross-sections’,CVGIP,48, pp. 124–143

    Google Scholar 

  • Marcil, E., Dansereau, J., Labelle, H. andDe Guise, J. (1995): ‘Incorporation of patient displacement into a trunk reconstruction technique’. Proc. IEEE EMBS'95, Montréal, Canada

  • Migeon, B., Tronel, M., Marche, P. andBadelon, O. (1992): ‘Echographic image processing for the study of the locomotive apparatus of neo-nates’,Innov. Tech. Biol. Med.,13, (1), pp. 1–13

    Google Scholar 

  • Migeon, B. andMarche, P. (1992): ‘Ultrasound tomography by radial image processing’,Innov. Tech. Biol. Mech.,13, (3), pp. 292–304

    Google Scholar 

  • Migeon, B. (1993): ‘2D and 3D reconstruction of the long bones of the limbs by echographic image processing’, Doctoral thesis, Université d'Orléans

  • Migeon, B., Vieyres, P. andMarche, P. (1994a): ‘Interpolation of star-shaped contours for the creation of lists of voxels: application to 3D visualisation of long bones’,Int. J. CADCAM Comput. Graph.,9, (4), pp. 579–587

    Google Scholar 

  • Migeon, B., Vieyres, P. andMarche, P. (1994b): ‘Tomographie ultrasonore par traitement d'images radiales: application à l'imagerie médicale’.J. Physique. Proc. 3rd French Conference on Acoustics, Toulouse, France, pp. 1297–1300

  • Migeon, B., Serfaty, V., Gorkani, M. andMarche, P. (1995): ‘An adaptive smoothing filter for URTURIP images applying the maximum entropy principle’.IEEE Eng. Med. Biol., pp. 762–765

  • Mills, P. H., Fuchs, H., Pizer, S. M. andRosenmann, J. G. (1989): ‘IMEX: a tool for image display and contour management for windowing environment’,SPIE Proc., 1091, pp. 132–142

    Google Scholar 

  • Petit, Y., Dansereau, J., Labelle, H. andDe Guise, J. (1995): ‘3D radiographic reconstruction of thoracic facet joints’, Proc. IEEE EMBS'95, Montréal, Canada.

  • Rolland, F., Montanvert, A. andChassery, J. M. (1989): ‘Reconstruction de volume à partir de coupes sériées’. Proc. PIXIM'89, Paris, France, pp. 511–522

  • Seghal, C. M., Lewallen, D. G., Nicholson, R. A. andGreen-Leaf, J. F. (1988): ‘Ultrasound transmission and reflection computerised tomography for imaging bones and adjoining soft tissues’,IEEE Ultrasonic. Symp., Chicago,2, pp. 849–852

    Google Scholar 

  • Seghal, C. M., Lewallen, D. G., Robb, R. A. andGreenleaf, J. F. (1991): ‘Ultrasonic imaging of musculoskeletal system’,News Physiol. Sci.,6, pp. 16–20

    Google Scholar 

  • Wells, N. T. (1977): ‘Biomedical Ultrasonics’ (Academic, New York)

    Google Scholar 

  • Ylitalo, J., Koivukangas, J. andOksman, J. (1990): ‘Ultrasonic reflection-mode computed tomography through a skullbone’,IEEE Trans.,BME-37, (11), pp. 1059–1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migeon, B., Marché, P. In vitro 3D reconstruction of long bones using B-scan image processing. Med. Biol. Eng. Comput. 35, 369–372 (1997). https://doi.org/10.1007/BF02534092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534092

Keywords

Navigation