Skip to main content
Log in

Calmodulin antagonists suppress cholesterol synthesis by inhibiting sterol Δ24 reductasereductase

  • Published:
Lipids

Abstract

Preincubation of hepatoma cells and human skin fibroblasts in the presence of the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide resulted in a dose-dependent suppression of [14C] mevalonolactone incorporation into cholesterol. At a calmodulin antagonist concentration of 25 μmol, the incorporation of [14C] mevalonolactone into cellular cholesterol was suppressed to about 30% (hepatoma cells) and 10% (human skin fibroblasts) of control values. When the total nonsaponifiable [14C] lipids were separated and analyzed by two-dimensional thin layer chromatography, an accumulation of [14C] desmosterol was observed along with reduced formation of [14C] cholesterol. However, when cells were preincubated in the presence of [14C] dihydrolanosterol, [14C] cholesterol formation was not inhibited by the calmodulin antagonists. About 25% of the cell-associated dihydrolanosterol radioactivity was converted to cholesterol in both control and calmodulin antagonist-pretreated cells. The data suggest that calmodulin antagonists prevent the conversion of desmosterol into cholesterol by inhibiting sterol Δ24 reductase and that the enzymes catalyzing sterol ring modifications are not affected by the inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, M.S., Goldstein, J.L., Kaneko, I., and Endo, A. (1970)J. Biol. Chem. 253, 1121–1128.

    Google Scholar 

  2. Sexton, R.C., Panini, S.R., Azran, F., and Rudney, H. (1983)Biochemistry 22, 5687–5692.

    Article  PubMed  CAS  Google Scholar 

  3. Panini, S.R., Sexton, R.C., and Rudney, H. (1984)J. Biol. Chem. 259, 7767–7771.

    PubMed  CAS  Google Scholar 

  4. Chang, T.Y., Schiavoni, E.S. Jr., and McCrae, K.R. (1979)J. Biol. Chem. 254, 11258–11263.

    PubMed  CAS  Google Scholar 

  5. Steinberg, D., and Avigan, J. (1960)J. Biol. Chem. 235, 3127–3129.

    CAS  Google Scholar 

  6. Filipovic, I., and Buddecke, E. (1986)Biochim. Biophys. Acta 876, 124–132.

    PubMed  CAS  Google Scholar 

  7. Field, R.B., and Holmlund, C.E. (1977)Arch. Biochem. Biophys. 180, 465–471.

    Article  PubMed  CAS  Google Scholar 

  8. Gibbons, G.F., and Mitropoulos, K.A. (1972)Biochem. J. 132, 439–448.

    Google Scholar 

  9. Svoboda, J.A., and Thompson, M.J. (1967)J. Lipid Res. 8, 152–154.

    PubMed  CAS  Google Scholar 

  10. Dempsey, M.E. (1969)Methods Enzymol. 15, 501–514.

    CAS  Google Scholar 

  11. Steinberg, D., and Avigan, J. (1969)Methods Enzymol. 15, 514–522.

    Article  CAS  Google Scholar 

  12. Gibbons, G.F., Pullinger, C.R., and Mitropoulos, K.A. (1979)Biochem. J. 183, 309–15.

    PubMed  CAS  Google Scholar 

  13. Frantz, I.D. Jr., and Schroepfer, G.J. Jr. (1967)Ann. Rev. Biochem. 36, 691–726.

    Article  CAS  PubMed  Google Scholar 

  14. Tuana, B.S., and MacLennan, D.H. (1984)J. Biol. Chem. 259, 6979–6983.

    PubMed  CAS  Google Scholar 

  15. Dalgarno, D.C., Klevit, R.E., Levine, B.A., Scott, G.M.M., Williams, R.J.P., Gergely, J., Zgrabarek, Z., Leavis, P.C., Grand, R.J.A., and Drabikowski, W. (1984)Biochim. Biophys. Acta 791, 164–172.

    PubMed  CAS  Google Scholar 

  16. Avigan, J., Goodman, D.S., and Steinberg, D. (1963)J. Biol. Chem. 4, 1283–1286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Filipovic, I., Buddecke, E. Calmodulin antagonists suppress cholesterol synthesis by inhibiting sterol Δ24 reductasereductase. Lipids 22, 261–265 (1987). https://doi.org/10.1007/BF02533989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533989

Keywords

Navigation