Skip to main content
Log in

The steric requirements for sterol inhibition of tetrahymanol biosynthesis

  • Symposium: Function of Steroids and Other Isopentenoid
  • Published:
Lipids

Abstract

Many naturally occurring sterols are accumulated and metabolized byTetrahymena pyriformis. In most cases, the sterols are desaturated to giveΔ5,7,22-derivatives. Compounds with an ethyl, but not with a methyl, substituent at C-24 are dealkylated. Exposure of the ciliates to the appropriate sterol sharply curtails the synthesis of the native pentacyclic triterpenoid alcohols, tetrahymanol and diplopterol. An analysis with modified sterols has revealed several additional features that are required for desaturation at C-7,8 and C-22,23 and for inhibition of tetrahymanol biosynthesis. The presence of atrans-17(20)-double bond, which eliminates free rotation at C-20 and fixes C-22 to the right of the nucleus, does not interfere with desaturation, while thecis- or left-handed isomer is not metabolized. Thecis17(20)-isomer is, however, an effective inhibitor of tetrahymanol biosynthesis, although less so that thetrans-counterpart. When a methyl or hydroxyl group at C-20 protrudes to the front of the molecule in the right-handed conformation, metabolism is reduced or abolished. Shortening (by one C-atom) or lengthening of the sterol side chain has little effect on the ability of the compounds to inhibit tetrahymanol biosynthesis or to support growth, as long as the overall length of the side chain does not exceed seven carbons from C-20. The presence of a 7α-, 7β-, 20α-, 20β-, or a 25-hydroxy group in the cholesterol molecule sharply inhibits desaturation and curtails the effectiveness of the compound as an inhibitor of tetrahymanol biosynthesis. The 7- or 22-keto derivatives seem to act in a fashion similar to the hydroxy derivatives, but these compounds show greater inhibition of growth. 20-Methylcholesterol, however, is a potent inhibitor of synthesis, which suggests that the polarity of the substituent of C-20 is more important than bulk. Many sterols can effectively replace tetrahymanol in the membranes of these ciliates. However, several of the compounds, which inhibit synthesis, appear to be physiologically inappropriate, and poor growth results. An example of the latter class is 20-methylcholesterol. Finally, a class of sterols, represented by 20α-hydroxycholesterol and 7-ketocholesterol, does not severly inhibit tetrahymanol synthesis but leads to growth inhibition and surface abnormalities. These sterols apparently lead to a disordered membrane, even in the presence of tetrahymanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kidder, G.W., and V.C. Dewey, in “The Biochemistry and Physiology of Protozoa,” Vol. 1, Edited by A. Lwoff, Academic Press, New York 1951, p. 232.

    Google Scholar 

  2. Van Wagtendonk, W.J., R.L. Conner, C.A. Miller, and M.R.R. Rao, Ann. N.Y. Acad. Sci. 56:929 (1953).

    Google Scholar 

  3. Conner, R.L., and W.J. Van Wagtendonk, J. Gen. Microbiol. 12:31 (1955).

    PubMed  CAS  Google Scholar 

  4. Conner, R.L., J.R. Landrey, E.S. Kaneshiro, and W.J. Van Wagtendonk, Biochim. Biophys. Acta 239:312 (1971).

    PubMed  CAS  Google Scholar 

  5. Conner, R.L., and F. Ungar, Exp. Cell Res. 36:134 (1964).

    Article  PubMed  CAS  Google Scholar 

  6. Conner, R.L., J.R. Landrey, C.H. Burns, and F.B. Mallory, J. Protozool. 15:600 (1968).

    PubMed  CAS  Google Scholar 

  7. Caspi, E., J.B. Greig, and J.M. Zander, Biochem. J. 109:931 (1968).

    PubMed  CAS  Google Scholar 

  8. Caspi, E., J.B., Greig, and J.M. Zander, Chem. Commun. 28(1969).

  9. Zander, J.M., J.B. Greig, and E. Caspi, J. Biol. Chem. 245:1247 (1970).

    PubMed  CAS  Google Scholar 

  10. Mallory, F.B., R.L. Conner, J.R. Landrey, J.M. Zander, J.B. Greig, and E. Caspi, J. Am. Chem. Soc. 90:3564 (1968).

    Article  CAS  Google Scholar 

  11. Caspi, E., J.M. Zander, J.B. Greig, F.B. Mallory, R.L. Conner, and J.R. Landrey, J. Am. Chem. Soc. 90:3563 (1968).

    Article  CAS  Google Scholar 

  12. Conner, R.L., F.B. Mallory, J.R. Landrey, K.A. Ferguson, E.S. Kaneshiro, and E. Ray, Biochem. Biophys. Res. Commun. 44:995 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. Nozawa, Y., and G.A. Thompson, Jr., J. Cell Biol. 49:712 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. Ferguson, K.A., F.M. Davis, R.L. Conner, J.R. Landrey, and F.B. Mallory, J. Biol. Chem. 250:6998 (1975).

    PubMed  CAS  Google Scholar 

  15. Conner, R.L., F.B. Mallory, J.R. Landrey, and C.W.L. Iyengar, J. Biol. Chem. 244:2325 (1969).

    PubMed  CAS  Google Scholar 

  16. Mallory, F.B., and R.L. Conner, Lipids 6:149 (1971).

    Article  PubMed  CAS  Google Scholar 

  17. Nes, W.R., P.A. Malya, F.B. Mallory, K.A. Ferguson, J.R. Landrey, and R.L. Conner, J. Biol. Chem. 246:561 (1971).

    PubMed  CAS  Google Scholar 

  18. Nes, W.R., J.M. Joseph, J.R. Landrey, and R.L. Conner, J. Biol. Chem. 253:2361 (1978).

    PubMed  CAS  Google Scholar 

  19. Bipson, T., L.J. Goad, and T.W. Goodwin, Biochem. J. 115:857 (1967).

    Google Scholar 

  20. Wilton, D.C., and M. Akhtar, Biochem. J. 116:337 (1970).

    PubMed  CAS  Google Scholar 

  21. Zander, J.M., and E. Caspi, J. Biol. Chem. 245:1682 (1970).

    PubMed  CAS  Google Scholar 

  22. Mulheirn, L.J., D.J. Aberhart, and E. Caspi, J. Biol. Chem. 246:6556 (1971).

    PubMed  CAS  Google Scholar 

  23. Nes, W.R., A. Alcaide, F.B. Mallory, J.R. Landrey, and R.L. Conner, Lipids 10:140 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. Nes, W.R., K. Krevitz, S. Behzadan, G.W. Patterson, J.R. Landrey, and R.L. Conner, Biochem. Biophys. Res. Commun. 66:1462 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. Britt, J.J., and K. Bloch, Comp. Biochem. Physiol. 2:213 (1961).

    CAS  Google Scholar 

  26. Calimbas, T., Fed. Proc. 31:430 (1972).

    Google Scholar 

  27. Calimbas, T., Fed. Proc. 32:519 (1973).

    Google Scholar 

  28. Dempsey, M.E., Ann. Rev. Biochem. 43:967 (1974).

    Article  PubMed  CAS  Google Scholar 

  29. Kandutsch, A.A., and H.W. Chen, J. Biol. Chem. 248:8408 (1973).

    PubMed  CAS  Google Scholar 

  30. Brown, M.S., and J.L. Goldstein J. Biol. Chem. 249:7306 (1974).

    PubMed  CAS  Google Scholar 

  31. Kandutsch, A.A., and H.W. Chen, J. Biol. Chem. 249:6057 (1974).

    PubMed  CAS  Google Scholar 

  32. Breslow, J.L., D.A. Lothrop, D.R. Spaulding, and A.A. Kandutsch, Biochim. Biophys. Acta 398:10 (1975).

    PubMed  CAS  Google Scholar 

  33. Kandutsch, A.A., and H.W. Chen, J. Cell Physiol. 85:415 (1975).

    Article  PubMed  CAS  Google Scholar 

  34. Schroepfer, G.J., E.J. Parish, H.W. Chen, and A.A. Kandutsch, J. Biol. Chem. 252:8975 (1977).

    PubMed  CAS  Google Scholar 

  35. Kandutsch, A.A., H.W. Chen, and E.P. Shown, Proc. Natl. Acad. Sci. USA 74:2500 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Conner, R.L., Landrey, J.R., Joseph, J.M. et al. The steric requirements for sterol inhibition of tetrahymanol biosynthesis. Lipids 13, 692–696 (1978). https://doi.org/10.1007/BF02533747

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533747

Keywords

Navigation