Skip to main content
Log in

Correlations between surface area and the rate of enzymatic desaturation with methyl branched 8,11,14-eicosatrienoic acid

  • Communications
  • Published:
Lipids

Abstract

Methyl-branched derivatives of methyl 8,11,14-eicosatrienoate form stable liquid-expanded monolayers. Surface areas are expanded by the methyl branch. The expansion effect is a function of surface pressure. At high surface pressure, the greatest expansion occurs with a mid-point methyl branch. At low surface pressure, surface area increases continuously as the methyl group is moved along the carbon chain from carbon 19 to carbon 5. Desaturase activity varies inversely with surface area, and a linear correlation exists between surface area at low surface pressure and the desaturation rate. These data support the concept that lipid structure and its effect on short range forces between molecules is an important factor in desaturase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stenhagen, E., Trans. Faraday Soc. 36:597 (1940).

    Article  CAS  Google Scholar 

  2. Stenhagen, E., and S. Ställberg, J. Biol. Chem. 139:345 (1941).

    CAS  Google Scholar 

  3. Ställberg, S., and E. Stenhagen, J. Biol. Chem. 143:171 (1942).

    Google Scholar 

  4. Ställberg-Stenhagen, S., and E. Stenhagen, J. Biol. Chem. 148:685 (1943).

    Google Scholar 

  5. Ställberg-Stenhagen, S., and E. Stenhagen, J. Biol. Chem. 165:599 (1946).

    Google Scholar 

  6. Weitzel, G., A.-M. Fretzdorff, and S. Heller, Hoppe Seylers Z. Physiol. Chem. 285:230 (1950).

    PubMed  CAS  Google Scholar 

  7. Izawa, M., Bull. Chem. Soc. Jpn. 25:182 (1952).

    Article  CAS  Google Scholar 

  8. Ries, Jr., H.E., and H.D. Cook, J. Colloid Sci. 9:535 (1954).

    Article  CAS  Google Scholar 

  9. Weitzel, G., A.-M. Fretzdorff, and S. Heller, Hoppe Seylers Z. Physiol. Chem. 288:189 (1951).

    PubMed  CAS  Google Scholar 

  10. Weitzel, G., A.-M. Fretzdorff, and S. Heller, Hoppe Seylers Z. Physiol. Chem. 288:200 (1951).

    PubMed  CAS  Google Scholar 

  11. Weitzel, G., A.-M. Fretzdorff, S. Heller, and E. Graeser, Kolloid Z. 127:110 (1952).

    Article  CAS  Google Scholar 

  12. Gaines, Jr., G.L., in “Insoluble Monolayers at Liquid-Gas Interfaces,” Interscience Publishers, New York, NY, 1966, pp. 233–240.

    Google Scholar 

  13. Brett, D., D. Howling, L.J. Morris, and A.T. James, Arch. Biochem. Biophys. 143:535 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. Do, U.H., and H. Sprecher, Arch. Biochem. Biophys. 171:597 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. Do., U.H., and H. Sprecher, Chem. Phys. Lipids 16:255 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. Heikkila, R.E., C.N. Kwong, and D.G. Cornwell, J. Lipid Res. 11:190 (1970).

    PubMed  CAS  Google Scholar 

  17. Sims, B., and G. Zografi, Chem. Phys. Lipid 6:109 (1971).

    Article  CAS  Google Scholar 

  18. Enoch, H.G., A. Catalá, and P. Strittmatter, J. Biol. Chem. 251:5095 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Patil, G.S., Sprecher, H. & Cornwell, D.G. Correlations between surface area and the rate of enzymatic desaturation with methyl branched 8,11,14-eicosatrienoic acid. Lipids 14, 826–828 (1979). https://doi.org/10.1007/BF02533524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533524

Keywords

Navigation