Skip to main content
Log in

Changes in the fatty acid composition of rat lung lipids during development and following age-dependent lipid peroxidation

  • Published:
Lipids

Abstract

Analyses of the fatty acid content and composition of various lung lipids were conducted in rats 1 day, 5 days, and 12 days after birth and in adult animals in order to define more clearly the specific lipid peroxidizing system found in neonatal rat lungs. Lipid peroxidation occurs in the 900×g supernatant fraction of rat lung homogenates in an age-dependent manner independent of the addition of any factor and is maximal at 5 days of age. No lipid peroxidation is evident in similar preparations of either newborn or adult lung tissue. As the animals develop, arachidonic and docosahexaenoic acids, fatty acids which are both highly susceptible to lipid peroxidation in the presence of a suitable catalyst, decrease gradually when measured as the percentage of the total fatty acids in the triglyceride fraction of the lung. The total quantity of triglycerides, however, is significantly lower in lungs from 1-day-old rats than at any other age. The fatty acid composition and total quantity of both lung phospholipids and lung free fatty acids do not show similar changes. Following in vitro incubation of the 900×g supernatant fraction of peroxidizing lung homogenates, an appreciable decrease in the amount of arachidonic and docosa-hexaenoic acid could be detected in lung triglycerides. Less extensive decreases were observed in the phospholipid fraction. No changes in these components were observed in newborn or adult animals. The addition of triarachidonin to the 900×g supernatant fraction of lung homogenates resulted in increased malondialdehyde release at all ages tested while added arachidonic acid increased the formation of malondialdehyde only in 5- and 12-day-old rat lung preparations. The addition of triolein, cholesterol arachidonate, and diarachidonyl phosphatidylcholine had no effect on malondialdehyde formation at any age. The age-dependent lipid peroxidation observed after in vitro incubation of rat lung homogenate preparations, therefore, may result from the relatively high concentration of triglycerides containing polyunsaturated fatty acids present in the neonatal tissue. As the susceptible polyunsaturated fatty acids of lung triglycerides are replaced by less unsaturated species, this activity may diminish concomitantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plaa, G.L., and H. Witschi, Ann. Rev. Pharmacol. Toxicol. 16:125 (1976).

    Article  CAS  Google Scholar 

  2. Mead, J.F., in “Free Radicals in Biology” Edited by W.A. Pryor, Vol. 1, Academic Press, New York, N.Y. 1976, p. 51.

    Google Scholar 

  3. May, H.E., and P.B. McCay, J. Biol. Chem. 243:2288 (1968).

    PubMed  CAS  Google Scholar 

  4. Niehaus, W.G., and B. Sammuelsson, Eur. J. Biochem. 6:126 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Kehrer, J.P., and A.P. Autor, Arch. Biochem. Biophys. 181:73 (1977).

    Article  PubMed  CAS  Google Scholar 

  6. Christopherson, B.O., Biochim. Biophys. Acta 164:35 (1968).

    Google Scholar 

  7. Chow, C.K., and A.L. Tappel, Lipids 7:518 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. Barrett, M.C., and A.A. Horton, Biochem. Soc. Trans. 3:124 (1975).

    PubMed  CAS  Google Scholar 

  9. Dobiasova, M., P. Hahn, and O. Koldovsky, Biochim. Biophys. Acta 84:538 (1964).

    PubMed  CAS  Google Scholar 

  10. Dahle, L.K., E.G. Hill, and R.T. Holman, Arch. Biochem. Biophys. 98:253 (1962).

    Article  PubMed  CAS  Google Scholar 

  11. Autor, A.P., L. Frank, and R.J. Roberts, Pediat. Res. 10:154 (1976).

    PubMed  CAS  Google Scholar 

  12. Folch, J., M. Lees, and G.H.S. Stanley, J. Biol. Chem. 226:497 (1957).

    PubMed  CAS  Google Scholar 

  13. Bernheim, F., M.L. Bernheim, and K.M. Wilbur, J. Biol. Chem. 174:257 (1948).

    CAS  Google Scholar 

  14. Itzhaki, R.F., and D.M. Gill, in “Methods in Enzymology”, Edited by S.P. Colowick and N.O. Kaplan, Vol. 9, Academic Press, New York, NY, 1964, p. 401.

    Google Scholar 

  15. Brinkman TLC Procedures, Bulletin BR218.

  16. Morrison, W.R., and L.M. Smith, J. Lipid Res. 5:600 (1964).

    PubMed  CAS  Google Scholar 

  17. Williams, H.H., H. Galbraith, M. Kaucher, E.Z. Moyer, A.J. Richards, and I.G. Macy, J. Biol. Chem. 161:475 (1945).

    CAS  Google Scholar 

  18. Barber, A.A., and K.M. Wilbur, Radiat. Res. 10:167 (1959).

    Article  PubMed  CAS  Google Scholar 

  19. Kaufmann, S.L., P.H. Burri, and E.R. Weibel, Anat. Record 180:63 (1974).

    Article  Google Scholar 

  20. Thurlbeck, W.M., Amer. Rev. Respir. Dis. 111:803 (1975).

    CAS  Google Scholar 

  21. Mason, R.J., T.P. Stossel, and M. Vaughan, J. Clin. Invest. 51:2399 (1972).

    Article  PubMed  CAS  Google Scholar 

  22. Georgiev, G., G. Dimitrov, K. Koumanov, and T. Niecheva, Biochim. Biophys. Acta 450:1 (1976).

    PubMed  CAS  Google Scholar 

  23. Sinclair, A.J., Lipids 9:909 (1974).

    Article  Google Scholar 

  24. Smith, S., and S. Abraham, in “Advances in Lipid Research”, Edited by R. Paoletti and D. Kritchevsky, Vol. 13, Academic Press, New York, NY, 1975, p. 195.

    Google Scholar 

  25. Gross, I., I. Ilic, C.M. Wilson, and S.A. Rooney, Biochim. Biophys. Acta 441:412 (1976).

    PubMed  CAS  Google Scholar 

  26. Bidlack, W.R., and A.L. Tappel, Lipids 8:177 (1973).

    PubMed  CAS  Google Scholar 

  27. Roubal, W.T., and A.L. Tappel, Arch. Biochem. Biophys. 113:5 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. Tappel, A.L., Fed. Proc. 32:1870 (1973).

    PubMed  CAS  Google Scholar 

  29. Haugaard, N., Physiol. Rev. 48:311 (1968).

    PubMed  CAS  Google Scholar 

  30. Tappel, A.L., Geriatrics 23:97 (1968).

    PubMed  CAS  Google Scholar 

  31. Polgai, G., W. Antagnoli, L.W. Ferrigan, E.A. Martin, and W.P. Gregg, Amer. J. Med. Sci. 252:580 (1966).

    Google Scholar 

  32. Clements, J.A., Arch. Intern. Med. 127:387 (1971).

    Article  PubMed  CAS  Google Scholar 

  33. Keenan, T.W., and D.J. Morre, Biochem. 9:19 (1970).

    Article  CAS  Google Scholar 

  34. Sorokin, S.P., in “Proceedings of the Biological Division, Oak Ridge National Laboratory, Atomic Energy Commission Symposium Series 21,” Oak Ridge, TN, 1970.

  35. Hance, A.J., and R.G. Crystal, Amer. Rev. Respir. Dis. 112:657 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of Public Heath Service Research Career Development Award 5-K04-HD00068 from the National Institute of Child Health and Human Development.

About this article

Cite this article

Kehrer, J.P., Autor, A.P. Changes in the fatty acid composition of rat lung lipids during development and following age-dependent lipid peroxidation. Lipids 12, 596–603 (1977). https://doi.org/10.1007/BF02533388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533388

Keywords

Navigation