Skip to main content
Log in

The first biomanipulation conference: a synthesis

  • Part Nine: Synthesis
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

At the First Biomanipulation Conference held in Amsterdam (8–11 August 1989), studies presented considered mainly trophic interactions in lakes, enclosures and laboratory systems. Studies on the interactions between phytoplankton and zooplankton emphasized the edibility of the phytoplankton in relation to the zooplankton size structure and the trophic state. Most lake experiments involved 50–100% reduction in fish standing stock or alternatively heavy stocking with piscivorous fish. The most dramatic effects of biomanipulation were found in shallow, eutrophic lakes which exhibited radical changes in ecosystem structure because of changes in light climate and consequently, luxuriant development of macrophytes. There was still much controversy about the top-down effects in relation to trophic state, especially those concerning the role of fish and zooplankton in the development and succession of phytoplankton. Many experiments showed indirect effects within the food web, emphasizing the importance of feedbacks and the complexity of the food web rather than the simplicity of the food chain. The stabilizing effects of refugia for zooplankton and fish on the ecosystem were stressed. Shallow lakes responded generally more rapidly to biomanipulation and this was most successfully accomplished when TP concentration was<50µg l−1, even though in a few cases at 10–20 fold higher TP concentrations (mostly PO4-P lakes) the results achieved could be maintained for two or more summers. For a guaranteed success of the measures an almost complete removal of fish appeared to be indispensible; moreover in many cases removal of benthivorous fish appeared to be even more important than that of planktivorous fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., 1984. The role of fish in lake ecosystems — and in limnology. In: Interaksjoner mellom trofiske nivaer i ferskvann, ed B. Bosheim & M. Nicholls, 189–197. Nordisk limnologsymposium, 1984, Oslo.

  • Benndorf, J., 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201: 84–203.

    Google Scholar 

  • Bernardi, R. de & G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200/201: 29–41.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Carpenter, S. R. (ed.), 1988. Complex interactions in lake communities. Springer Verlag. 283 pp. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

  • Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200/201: 177–186.

    Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.

    Google Scholar 

  • Duncan, A., 1990. A review: limnological management and biomanipulation in the London reservoirs. Hydrobiologia 200/201: 541–548.

    Google Scholar 

  • Elser, J. J., H. J. Carney & C. R. Goldman, 1990. The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison. Hydrobiologia 200/201: 69–82.

    Google Scholar 

  • Faafeng, B. A., D. O. Hessen, A. Brabrand & J. P. Nilssen, 1990. Biomanipulation and food-web dynamics — the importance of seasonal stability. Hydrobiologia 200/201: 119–128.

    Google Scholar 

  • Gliwicz, M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97.

    Google Scholar 

  • Gons, H. & M. Rijkeboer, 1990. Algal growth and loss rates in Lake Loosdrecht: first evaluation of the roles of light and wind on a basis of steady state kinetics. Hydrobiologia 191: 129–138.

    Article  Google Scholar 

  • Gophen, M., 1990. Biomanipulation: retrospective and future development. Hydrobiologia 200/201: 1–11.

    Google Scholar 

  • Grimm, M. P. & J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.

    Google Scholar 

  • Gulati, R. D., 1990. Structural and grazing responses of zooplankton community to biomanipulation of some Dutch water bodies. Hydrobiologia 200/201: 99–118.

    Google Scholar 

  • Gulati, R. D., E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), 1990. Biomanipulation, tool for water management (First International Conference, 8–11 August, 1989). Developments in Hydrobiology. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control and competition. Am. Nat. 94: 421–425.

    Article  Google Scholar 

  • Hanazato, T., T. Iwakuma & H. Hayashi, 1990. Impact of whitefish on an enclosure ecosystem in a shallow eutrophic lake: selective feeding of fish and predation effects on the zooplankton communities. Hydrobiologia 200/201: 129–140.

    Google Scholar 

  • Hanson, M. A. & M. G. Butler, 1990. Early responses of plankton and turbidity to biomanipulation in a shallow prairie lake. Hydrobiologia 200/201: 317–327.

    Google Scholar 

  • Helminen, H., J. Sarvala & A. Hirvonen, 1990. Growth and food consumption of vendace (Coregonus albula (L.) in lake Pyhäjärvi, SW Finland: a bioenergetics modeling analysis. Hydrobiologia 200/201: 511–522.

    Google Scholar 

  • Horppila, J. & T. Kairesalo, 1990. A fading recovery: the role of roach (Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijärvi, southern Finland. Hydrobiologia 200/201: 153–165.

    Google Scholar 

  • Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–524.

    Google Scholar 

  • Hrbáček, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200/201: 379–389.

    Google Scholar 

  • Iwakuma, T., H. Hayashi, I. Yasuda, T. Hanazato & K. Takada, 1990. Impact of whitefish on an enclosure ecosystem in a shallow eutrophic lake: changes in nutrient concentrations, phytoplankton and zoobenthos. Hydrobiologia 200/201: 141–152.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: thresholds, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperare lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.

    Google Scholar 

  • Kerfoot, W. C. & A. Sih (ed.), 1987. Predation: direct and indirect impacts on aquatic communities. University Press of New England. 386 pp.

  • Kerfoot, W. & D. L. DeAngelis, 1989. Scale-dependent dynamics: zooplankton and the stability of freshwater food webs. Trends in Ecology and Evolution 4: 167–171.

    Article  Google Scholar 

  • Kornijow, R., R. D. Gulati & E. van Donk, 1990. Hydrophyte-macroinvertebrate interactions in Zwemlust, a lake undergoing biomanipulation. Hydrobiologia 200/201: 467–474.

    Google Scholar 

  • Lammens, E. H. R. R., 1988. Trophic interactions in the hypertrophic lake Tjeukemeer: top-down and bottom-up effects in relation to the hydrology, predation and bioturbation during the period 1974–1985. Limnologica (Berlin) 19: 81–85.

    CAS  Google Scholar 

  • Lammens, E. H. R. R., 1989. Causes and consequences of the success of bream in Dutch eutrophic lakes. Hydrobiol. Bull. 23: 11–19.

    Article  Google Scholar 

  • Lyche, A., B. A. Faafeng & Å. Brabrand, 1990. Predictability and possible mechanisms of plankton response to reduction of planktivorous fish. Hydrobiologia 200/201: 251–261.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • McQueen, D. J., M. R. S. Johannes & J. R. Post, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59: 289–309.

    Article  Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, N. R. Lafontaine, A. S. Young, E. Longbotham & D. R. S. Lean, 1990. Effect of planktivore abundance on chlorophyll-a and Secchi depth. Hydrobiologia 200/201: 337–341.

    Google Scholar 

  • Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–315.

    Google Scholar 

  • Miura, T., 1990. The effects of planktivorous fishes on the plankton community in an eutrophic lake. Hydrobiologia 200/201: 567–579.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.

    Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Arruda & P. Niemela, 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118: 240–261.

    Article  Google Scholar 

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.

    Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In: S. R. Carpenter (ed), Complex interactions in lake communities. Springer-Verlag, New York: 45–68.

    Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Raat, A. J. P., 1990. Production, consumption and prey availability of northern pike (Esox lucius), pikeperch (Stizostedion lucioperca) and European catfish (Silurus glanis): a bioenergetics approach. Hydrobiologia 200/201: 497–509.

    Google Scholar 

  • Rasmussen, K., 1990. Some positive and negative effects of stocking whitefish on the ecosystem redevelopment of Hjarbæk fjord, Denmark. Hydrobiologia 200/201: 593–602.

    Google Scholar 

  • Reeders, H. H. & A. Bij de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437–450.

    Google Scholar 

  • Riemann, B., K. Christoffersen, H. J. Jensen, J. P. Müller, C. Lindegaard & S. Bosselmann, 1990. Ecological consequences of a manual reduction of roach and bream in a eutrophic temperate lake. Hydrobiologia 200/201: 241–250.

    Google Scholar 

  • Sanni, S. & S. B. Waervågen, 1990. Oligotrophication as a result of planktivorous fish removal with rotenone in the small, eutrophic, Lake Mosvatn, Norway. Hydrobiologia 200/201: 263–274.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486.

    Google Scholar 

  • Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, B. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation studies of biological ways to reduce algal abundance and eliminate blue-greens. EPA-600/3-82-096. Corvalis Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvalis, Oregon.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase — making it stable. Hydrobiologia 200/201: 13–27.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.

    Google Scholar 

  • Starling, F. L. R. M. & A. J. A. Rocha, 1990. Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir. Hydrobiologia 200/201: 581–591.

    Google Scholar 

  • Tatrai, I., G. Tóth, L. Ponyi, J. Zlinskaky & V. Istvánovics, 1990. Bottom-up effects of bream (Abramis brama L.) in Lake Balaton. Hydrobiologia 200/201: 167–176.

    Google Scholar 

  • Theiss, J., K. Zielinski & H. Lang, 1990, Biomanipulation by introduction of herbivorous zooplankton. A helpful shock for eutrophic lakes? Hydrobiologia 200/201: 59–68.

    Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein-Breteler, 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.

    Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati, P. G. M Heuts, W. A. de Kloet & L. van Liere, 1990. First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands. Hydrobiologia 200/201: 291–301.

    Google Scholar 

  • Vanni, M. J., C. Luecke, J. F. Kitchell & J. Magnuson, 1990. Effects of planktivorous fish mass mortality on the plankton community of Lake Mendota, Wisconsin: implications for biomanipulation. Hydrobiologia 200/201: 329–336.

    Google Scholar 

  • Vermaat, J. E., M. J. M. Hootsmans & G. M. van Dijk, 1990. Ecosystem development in different types of littoral enclosures. Hydrobiologia 200/201: 391–398.

    Google Scholar 

  • Wiśniewski, R., 1990. Shoals ofDreissena polymorpha as bioprocessor of seston. Hydrobiologia 200/201: 451–458.

    Google Scholar 

  • Zalewski, M., B. Brewinska-Zaras, F. Frankiewicz & S. Kalinowski, 1990. The potential for biomanipulation using fry communities in a lowland reservoir: concordance between water quality and optimal recruitment. Hydrobiologia 200/201: 549–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammens, E.H.R.R., Gulati, R.D., Meijer, ML. et al. The first biomanipulation conference: a synthesis. Hydrobiologia 200, 619–627 (1990). https://doi.org/10.1007/BF02530378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530378

Key words

Navigation