Skip to main content
Log in

A protein tyrosine kinase associated with the ATP-dependent inactivation of adipose diacylglycerol acyltransferase

  • Articles
  • Published:
Lipids

Abstract

The activity that has been previously reported to reversibly inactivate adipose glycerolphosphate acyltransferase (GPAT) and diacylglycerol acyltransferase (DGAT)in vitro in the presence of ATP is shown here to be partially purified from adipose tissue with an apparent molecular weight of 68 kDa. The activity responsible for inactivating DGAT is associated with a kinase activity as determined by phosphate incorporation both into microsomal proteins and into a synthetic tyrosine-containing peptide as substrate for protein tyrosine kinase. Two microsomal polypeptides of 53 and 69 kDa are major substrates of this kinase. Both DGAT inactivating and kinase activities assayed from the purified sample have been found to be insensitive to the Ser/Thr kinase inhibitor H-7 while being sensitive to genistein and tyrphostin-25. A crude protein phosphatase preparation from liver was capable of reversing the effects of both activities. The purified sample was also shown to inactivate GPAT in the presence of ATP. These results suggest that a protein tyrosine kinase, in concert with a protein tyrosine phosphatase, may regulate the activities of DGAT and GPAT by a phosphorylation-dephosphorylation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DGAT:

diacylglycerol acyltransferase

DTT:

dl-dithiothreitol

GPAT:

glycerolphosphate acyltransferase

PAGE:

polyacrylamine gel electrophoresis

PAP:

phosphatidate phosphatase

PKA:

protein kinase A

PKC:

protein kinase C

TAG:

triacylglycerol

TED:

buffer, 50 mM Tris-HCl (pH 7.5)/l mM EDTA/2 mM DTT

TMD:

buffer, 50 mM Tris-HCl (pH 7.5)/10 mM MgCl2/1 mM DTT

References

  1. Mayorek, N., Grinstein, I., and Bar-Tana, J. (1989) Triacylglycerol Synthesis in Cultured Rat Hepatocytes.Eur. J. Biochem. 182, 395–400.

    Article  CAS  PubMed  Google Scholar 

  2. Brindley, D.N. (1984) Intracellular Translocation of Phosphatidate Phosphohydrolase and Its Possible Role in the Control of Glycerolipid Synthesis,Prog. Lipid Res. 23, 115–133.

    Article  CAS  PubMed  Google Scholar 

  3. Stals, H.K., Mannaerts, G.P., and Declercq, P.E. (1992) Factors Influencing Triacylglycerol Synthesis in Permeabilized Rat Hepatocytes,Biochem. J. 283, 719–725.

    CAS  PubMed  Google Scholar 

  4. Saggerson, E.D. (1988) Phosphatidate Phosphohydrolase Activity in Adipose Tissue, inPhosphatidate Phosphohydrolase (Brindley, D.N., ed.), Vol. 1, pp. 80–124, CRC Press Inc., Boca Raton.

    Google Scholar 

  5. Vila, M.C., and Farese, R.V. (1991) Insulin Rapidly Increases Glycerolphosphate Acyltransferase Activity, in Rat Adipocytes,Arch. Biochem. Biophys. 284, 366–368.

    Article  CAS  PubMed  Google Scholar 

  6. Soorana, S.R., and Saggerson, E.D. (1978) Studies of the Effect of Adrenaline on Glycerolphosphate Acyltransferase Activity in Rat Adipocytes,FEBS Lett. 90, 141–144.

    Article  Google Scholar 

  7. Cheng, C.H.K., and Saggerson, E.D. (1980) The Inactivation of Rat Adipocyte Mg++-Dependent Phosphatidate Phosphohydrolase by Noradrenaline.Biochem. J. 190, 659–662.

    CAS  PubMed  Google Scholar 

  8. Melki, S.A., and Abumrad, N.A. (1992) Glycerolipid Synthesis in Isolated Adipocytes: Substrate Dependence and Influence of Norepinephrine,J. Lipid Res. 33, 669–678.

    CAS  PubMed  Google Scholar 

  9. Heathers, G.P., Al-Muhtaseb, N., and Brunt, R.V. (1985) The Effect of Adrenergic Agents on the Activity of Glycerol 3-Phosphate Acyltransferase and Triglyceride Lipase in the Isolated Perfused Rat Heart.J. Mol. Cell Cardiol. 17, 785–796.

    Article  CAS  PubMed  Google Scholar 

  10. Nimmo, H.G., and Houston, B. (1978) Rat Adipose Tissue Glycerolphosphate Acyltransferase Can Be Inactivated by Cyclic AMP-Dependent Protein Kinase.Biochem. J. 176, 607–610.

    CAS  PubMed  Google Scholar 

  11. Berglund, L., Björkhem, I., and Einarsson, K. (1982) Apparent Phosphorylation-Dephosphorylation of Soluble Phosphatidic Acid Phosphatase in Rat Liver,Biochem. Biophys Res. Commun. 105, 288–295.

    Article  CAS  PubMed  Google Scholar 

  12. Haagsman, H.P., de Haas, C.G.M., Geelen, M.J.H., and van Golde, L.M.G. (1982) Regulation of Triacylglycerol Synthesis in the Liver,J. Biol. Chem. 257, 10593–10596.

    CAS  PubMed  Google Scholar 

  13. Söling, H.D., Fest, W., Schmidt, T., Esselmann, H., and Bachmann, V. (1989) Signal Transmission in Exocrine Cells Is Associated with Rapid Activity Changes of Acyltransferases and Diacylglycerol Kinase Due to Reversible Protein Phosphorylation,J. Biol. Chem. 264, 10643–10648.

    PubMed  Google Scholar 

  14. Butterwith, S.C., Martin, A., and Brindley, D.N. (1984) Can Phosphorylation of Phosphatidate Phosphohydrolase by a Cyclic AMP-Dependent Mechanism Regulate Its Activity and Subcellular Distribution and Control Hepatic Glycerolipid Synthesis?,Biochem J. 222, 487–493.

    CAS  PubMed  Google Scholar 

  15. Nimmo, G.A., and Nimmo, H.G. (1984) Studies of Rat Adipose Tissue Microsomal Glycerol Phosphate Acyltransferase,Biochem. J. 224, 101–108.

    CAS  PubMed  Google Scholar 

  16. Rider, M.H., and Saggerson, E.D. (1983) Regulation by Noradrenaline of the Mitochondrial and Microsomal Forms of Glycerol Phosphate Acyltransferase in Rat Adipocytes.Biochem. J. 214, 235–246.

    CAS  PubMed  Google Scholar 

  17. Walsh, M., Durocher, V., and Rodriguez, A. (1989) Reversible ATP-Dependent Inactivation of Glycerolphosphate Acyltransferase from Rat Adipose Tissue,Biochem. Cell Biol. 67, 48–52.

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez, M.A., Dias, C., and Lau, T.E. (1992) Reversible ATP-Dependent Inactivation of Adipose Diacylglycerol Acyltransferase.Lipids 27, 577–581.

    Article  CAS  PubMed  Google Scholar 

  19. Bishop, J.E., and Hajra, A.K. (1980) A Method for the Chemical Synthesis of14C-Labelled Fatty Acyl Coenzyme A’s of High Specific Activity,Anal. Biochem. 106, 344–350.

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez, A., Riendeau, D., and Meighen, E. (1983) Purification of the Acyl Coenzyme A Reductase Component from a Complex Responsible for the Reduction of Fatty Acids in Bioluminescent Bacteria,J. Biol. Chem. 258, 5233–5237.

    CAS  PubMed  Google Scholar 

  21. Brandt, H., Capulong, Z.L., and Lee, E.Y.C. (1975) Purification and Properties of Rabbit Liver Phosphorylase Phosphatase.J. Biol. Chem. 250, 8038–8044.

    CAS  PubMed  Google Scholar 

  22. Pike, L.J., Eakes, A.T., and Krebs, E.G. (1986) Characterization of Affinity-Purified Insulin Receptor/Kinase.J. Biol. Chem. 261, 3782–3789.

    CAS  PubMed  Google Scholar 

  23. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4,Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  24. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  25. Ozasa, S., Kempner, E.S., and Erickson, S.K. (1989) Functional Size of Acyl Coenzyme A: Diacylglycerol Acyltransferase by Radiation Inactivation,J. Lipid Res. 30, 1759–1762.

    CAS  PubMed  Google Scholar 

  26. Andersson, M., Wettesten, M., Borén, J., Magnusson, A., Sjöberg, A., Rustaeus, S., and Olofsson, S.O. (1994) Purification of Diacylglycerol-Acyltransferase from Rat Liver to Near Homogeneity.J. Lipid Res. 35, 535–545.

    CAS  PubMed  Google Scholar 

  27. Green, P.R., Merrill Jr., A.H., and Bell, R.M. (1981) Membrane Phospholipid Synthesis inEscherichia Coli.J. Biol. Chem. 256, 11151–11159.

    CAS  PubMed  Google Scholar 

  28. Yet, S.F., Lee, S., Hahm, Y.T., and Sul, H.S. (1993) Expression and Identification of p90 as the Murine Mitochondrial Glycerol-3-Phosphate Acyltransferase.FASEB J. 7, A1267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lau, T.E., Rodriguez, M.A. A protein tyrosine kinase associated with the ATP-dependent inactivation of adipose diacylglycerol acyltransferase. Lipids 31, 277–283 (1996). https://doi.org/10.1007/BF02529874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529874

Keywords

Navigation