Skip to main content

Protein Tyrosine Phosphatase Epsilon as a Regulator of Body Weight and Glucose Metabolism

  • Chapter
  • First Online:
Protein Tyrosine Phosphatase Control of Metabolism
  • 875 Accesses

Abstract

The obesity pandemic has focused attention in recent years to the physiological and molecular mechanisms that regulate body weight and glucose metabolism. Key signaling pathways that regulate both parameters depend heavily on reversible phosphorylation of proteins on tyrosine residues, a process regulated by the opposing activities of tyrosine kinases and tyrosine phosphatases. Here we review the roles of protein tyrosine phosphatase epsilon (PTPe) in regulating the leptin and insulin signaling pathways and through them—body weight and glucose metabolism. Mice lacking PTPe are leptin-hypersensitive and are protected from weight gain that follows a high-fat diet. PTPe helps downregulate leptin receptor signaling in the hypothalamus by dephosphorylating JAK2 following activation of the leptin receptor, thus inhibiting the receptor post-activation. PTPe is induced to perform this function after undergoing leptin receptor-induced phosphorylation at its C-terminal Y695. Mice lacking PTPe are also insulin-hypersensitive, indicating that PTPe downregulates signaling by this receptor as well. Studies in muscle cells confirm that PTPe inhibits insulin receptor signaling, possibly by targeting the receptor itself. These studies identify PTPe as a physiological inhibitor of both signaling pathways and as a factor in supporting the resistance to leptin and insulin that is established in obesity and in type-II diabetes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRP:

Agouti-related protein

BHK:

Baby hamster kidney

CD:

Chow diet

Cyt-PTPe:

Cytosolic isoform of PTPe

EKO:

PTPe-knockout

ERK:

Extracellular signal-regulated kinase

GSK:

Glycogen synthase kinase

HFD:

High-fat diet

PEPCK:

Phosphoenolpyruvate carboxykinase

PKB:

Protein kinase B

POMC:

Pro-opiomelanocortin

PTK:

Protein tyrosine kinase

PTP:

Protein tyrosine phosphatase

PTPe:

Protein tyrosine phosphatase epsilon

RPTPe:

Receptor-type isoform of PTPe

RPTPs:

Receptor-type PTPs

WT:

Wild-type

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100(1):113–127

    Article  PubMed  CAS  Google Scholar 

  2. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  PubMed  CAS  Google Scholar 

  3. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  PubMed  CAS  Google Scholar 

  4. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

  5. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7(11):833–846

    Article  PubMed  CAS  Google Scholar 

  6. Navis AC, van den Eijnden M, Schepens JT, Hooft van Huijsduijnen R, Wesseling P, Hendriks WJ (2010) Protein tyrosine phosphatases in glioma biology. Acta Neuropathol 119(2): 157–175

    Article  PubMed  CAS  Google Scholar 

  7. Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T (2008) Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 26:29–55

    Article  PubMed  CAS  Google Scholar 

  8. Hendriks WJ, Elson A, Harroch S, Stoker AW (2008) Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 275(5):816–830

    Article  PubMed  CAS  Google Scholar 

  9. Pulido R, Hooft van Huijsduijnen R (2008) Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 275(5):848–866

    Article  PubMed  CAS  Google Scholar 

  10. den Hertog J, Ostman A, Bohmer FD (2008) Protein tyrosine phosphatases: regulatory mechanisms. FEBS J 275(5):831–847

    Article  Google Scholar 

  11. Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem 2(10):1563–1576

    Article  PubMed  CAS  Google Scholar 

  12. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J (2010) Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des 16(16):1843–1862

    Article  PubMed  CAS  Google Scholar 

  13. Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK (2011) Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 147(1): 185–198

    Article  PubMed  CAS  Google Scholar 

  14. Elson A, Leder P (1995) Protein-tyrosine phosphatase epsilon. An isoform specifically expressed in mouse mammary tumors initiated by v-Ha-ras OR neu. J Biol Chem 270(44):26116–26122

    Article  PubMed  CAS  Google Scholar 

  15. Krueger NX, Streuli M, Saito H (1990) Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 9:3241–3252

    PubMed  CAS  Google Scholar 

  16. Lim KL, Lai DS, Kalousek MB, Wang Y, Pallen CJ (1997) Kinetic analysis of two closely related receptor-like protein-tyrosine-phosphatases, PTP alpha and PTP epsilon. Eur J Biochem 245(3):693–700

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura K, Mizuno Y, Kikuchi K (1996) Molecular cloning of a novel cytoplasmic protein tyrosine phosphatase PTP epsilon. Biochem Biophys Res Commun 218:726–732

    Article  PubMed  CAS  Google Scholar 

  18. Elson A, Leder P (1995) Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase epsilon. Proc Natl Acad Sci U S A 92(26):12235–12239

    Article  PubMed  CAS  Google Scholar 

  19. Tanuma N, Nakamura K, Kikuchi K (1999) Distinct promoters control transmembrane and cytosolic protein tyrosine phosphatase epsilon expression during macrophage differentiation. Eur J Biochem 259:46–54

    Article  PubMed  CAS  Google Scholar 

  20. Gil-Henn H, Volohonsky G, Elson A (2001) Regulation of protein-tyrosine phosphatases alpha and epsilon by calpain-mediated proteolytic cleavage. J Biol Chem 276(34):31772–31779

    Article  PubMed  CAS  Google Scholar 

  21. Gil-Henn H, Volohonsky G, Toledano-Katchalski H, Gandre S, Elson A (2000) Generation of novel cytoplasmic forms of protein tyrosine phosphatase epsilon by proteolytic processing and translational control. Oncogene 19(38):4375–4384

    Article  PubMed  CAS  Google Scholar 

  22. Kraut J, Volohonsky G, Toledano-Katchalski H, Elson A (2002) Nuclear localization of non-receptor protein tyrosine phosphatase epsilon is regulated by its unique N-terminal domain. Exp Cell Res 281(2):182–189

    Article  PubMed  CAS  Google Scholar 

  23. Elson A (1999) Protein tyrosine phosphatase epsilon increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene 18(52):7535–7542

    Article  PubMed  CAS  Google Scholar 

  24. Berman-Golan D, Elson A (2007) Neu-mediated phosphorylation of protein tyrosine phosphatase epsilon is critical for activation of Src in mammary tumor cells. Oncogene 26(49): 7028–7037

    Article  PubMed  CAS  Google Scholar 

  25. Gil-Henn H, Elson A (2003) Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J Biol Chem 278(18): 15579–15586

    Article  PubMed  CAS  Google Scholar 

  26. Peretz A, Gil-Henn H, Sobko A, Shinder V, Attali B, Elson A (2000) Hypomyelination and increased activity of voltage-gated K(+) channels in mice lacking protein tyrosine phosphatase epsilon. EMBO J 19:4036–4045

    Article  PubMed  CAS  Google Scholar 

  27. Tiran Z, Peretz A, Attali B, Elson A (2003) Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon. J Biol Chem 278(19):17509–17514

    Article  PubMed  CAS  Google Scholar 

  28. Muja N, Lovas G, Romm E, Machleder D, Ranjan M, Gallo V et al (2004) Expression of a catalytically inactive transmembrane protein tyrosine phosphatase epsilon (tm-PTP epsilon) delays optic nerve myelination. Glia 48(4):278–297

    Article  PubMed  Google Scholar 

  29. Chiusaroli R, Knobler H, Luxenburg C, Sanjay A, Granot-Attas S, Tiran Z et al (2004) Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 15(1):234–244

    Article  PubMed  CAS  Google Scholar 

  30. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664

    Article  PubMed  CAS  Google Scholar 

  31. Granot-Attas S, Luxenburg C, Finkelshtein E, Elson A (2009) PTP epsilon regulates integrin-mediated podosome stability in osteoclasts by activating Src. Mol Biol Cell 20(20):4324–4334

    Article  PubMed  CAS  Google Scholar 

  32. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp 60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90(4):1622–1627

    Article  PubMed  CAS  Google Scholar 

  33. Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P et al (2008) The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell 19(1):394–404

    Article  PubMed  CAS  Google Scholar 

  34. Toledano-Katchalski H, Kraut J, Sines T, Granot-Attas S, Shohat G, Gil-Henn H et al (2003) Protein tyrosine phosphatase epsilon inhibits signaling by mitogen-activated protein kinases. Mol Cancer Res 1(7):541–550

    PubMed  CAS  Google Scholar 

  35. Wabakken T, Hauge H, Finne EF, Wiedlocha A, Aasheim H (2002) Expression of human protein tyrosine phosphatase epsilon in leucocytes: a potential ERK pathway-regulating phosphatase. Scand J Immunol 56(2):195–203

    Article  PubMed  CAS  Google Scholar 

  36. Tanuma N, Nakamura K, Shima H, Kikuchi K (2000) Protein-tyrosine phosphatase PTPepsilon C inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 275:28216–28221

    PubMed  CAS  Google Scholar 

  37. Tanuma N, Shima H, Nakamura K, Kikuchi K (2001) Protein tyrosine phosphatase epsilonC selectively inhibits interleukin-6- and interleukin- 10-induced JAK-STAT signaling. Blood 98:3030–3034

    Article  PubMed  CAS  Google Scholar 

  38. Tanuma N, Shima H, Shimada S, Kikuchi K (2003) Reduced tumorigenicity of murine leukemia cells expressing protein-tyrosine phosphatase, PTPepsilon C. Oncogene 22(12): 1758–1762

    Article  PubMed  CAS  Google Scholar 

  39. Sully V, Pownall S, Vincan E, Bassal S, Borowski AH, Hart PH et al (2001) Functional abnormalities in protein tyrosine phosphatase epsilon-deficient macrophages. Biochem Biophys Res Commun 286:184–188

    Article  PubMed  CAS  Google Scholar 

  40. Thompson LJ, Jiang J, Madamanchi N, Runge MS, Patterson C (2001) PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. Am J Physiol Heart Circ Physiol 281:H396–H403

    PubMed  CAS  Google Scholar 

  41. De Franceschi L, Biondani A, Carta F, Turrini F, Laudanna C, Deana R et al (2008) PTPepsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells. Proteomics 8(22):4695–4708

    Article  PubMed  Google Scholar 

  42. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104(4):531–543

    Article  PubMed  CAS  Google Scholar 

  43. Wauman J, Tavernier J (2011) Leptin receptor signaling: pathways to leptin resistance. Front Biosci 17:2771–2793

    Article  Google Scholar 

  44. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    Article  PubMed  CAS  Google Scholar 

  45. Myers MG Jr, Munzberg H, Leinninger GM, Leshan RL (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 9(2):117–123

    Article  PubMed  CAS  Google Scholar 

  46. Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 297(6):E1247–E1259

    Article  PubMed  CAS  Google Scholar 

  47. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12(8):917–924

    Article  PubMed  CAS  Google Scholar 

  48. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ et al (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2(4):497–503

    Article  PubMed  CAS  Google Scholar 

  49. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y et al (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2(4):489–495

    Article  PubMed  CAS  Google Scholar 

  50. Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ et al (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14(5):684–699

    Article  PubMed  CAS  Google Scholar 

  51. Krajewska M, Banares S, Zhang EE, Huang X, Scadeng M, Jhala US et al (2008) Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol 172(5):1312–1324

    Article  PubMed  CAS  Google Scholar 

  52. Zhang EE, Chapeau E, Hagihara K, Feng GS (2004) Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A 101(45):16064–16069

    Article  PubMed  CAS  Google Scholar 

  53. He Z, Zhang SS, Meng Q, Li S, Zhu HH, Raquil MA et al (2012) Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals. Mol Cell Biol 32(10):1867–1878

    Article  PubMed  CAS  Google Scholar 

  54. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W et al (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 120(3):720–734

    Article  PubMed  CAS  Google Scholar 

  55. Rousso-Noori L, Knobler H, Levy-Apter E, Kuperman Y, Neufeld-Cohen A, Keshet Y et al (2011) Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab 13(5):562–572

    Article  PubMed  CAS  Google Scholar 

  56. Sines T, Granot-Attas S, Weisman-Welcher S, Elson A (2007) Association of tyrosine phosphatase epsilon with microtubules inhibits phosphatase activity and is regulated by the epidermal growth factor receptor. Mol Cell Biol 27(20):7102–7112

    Article  PubMed  CAS  Google Scholar 

  57. Belgardt BF, Bruning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 1212:97–113

    Article  PubMed  CAS  Google Scholar 

  58. Clegg DJ, Riedy CA, Smith KA, Benoit SC, Woods SC (2003) Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 52(3):682–687

    Article  PubMed  CAS  Google Scholar 

  59. Shi H, Seeley RJ, Clegg DJ (2009) Sexual differences in the control of energy homeostasis. Front Neuroendocrinol 30(3):396–404

    Article  PubMed  CAS  Google Scholar 

  60. Andersen JN, Elson A, Lammers R, Romer J, Clausen JT, Moller KB et al (2001) Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J 354(Pt 3):581–590

    Article  PubMed  CAS  Google Scholar 

  61. Nakagawa Y, Aoki N, Aoyama K, Shimizu H, Shimano H, Yamada N et al (2005) Receptor-type protein tyrosine phosphatase epsilon (PTPepsilonM) is a negative regulator of insulin signaling in primary hepatocytes and liver. Zoolog Sci 22(2):169–175

    Article  PubMed  CAS  Google Scholar 

  62. Aga-Mizrachi S, Brutman-Barazani T, Jacob AI, Bak A, Elson A, Sampson SR (2008) Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology 149(2):605–614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Elson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elson, A. (2013). Protein Tyrosine Phosphatase Epsilon as a Regulator of Body Weight and Glucose Metabolism. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_10

Download citation

Publish with us

Policies and ethics